Crop Germination – What Soil Temperatures are Needed?

Soil temperature drives germination and seedling emergence, so how cold is too cold?  What is your soil temperature at your targeted seeding depth….today? Finally, when should you be measuring the soil temperature?

The following are the minimum temperatures needed for germination to begin in various crops.  These values should be regarded as approximate, since germination depends on factors other than just temperature.  But, if soils are too cool, germination will be delayed and cause uneven or poor seedling emergence.

 

Crop Temperature     (°C)
Wheat 4
Barley 3
Oats 5
Corn 10
Canola 5
Flax 9
Sunflower 6
Edible Beans 10
Peas 4
Soybeans 10

Sources: North Dakota State University Extension Service, Alberta Agriculture & Rural Development and Canola Council of Canada

Getting an accurate measure on soil temperature

Determine how deep you will be seeding. Then place your soil thermometer at the targeted depth. Take two measurements throughout the day: one in the morning (8am) and one in the early evening (8pm).  Average the two readings to determine the average soil temperature. The recommendation is to take readings for two to three days to establish a multiple day average and to measure at a number of locations in the field, to account for field variability.

Still not sure and short on time?  See the soil temperature data for various locations across Manitoba from the MB Ag-Weather Program: https://www.gov.mb.ca/agriculture/weather/soil-temperature.html.  This can be used as a guideline for an area, but in-field measurements are going to tell you what is actually going on in your field!

 

Respond
Have a follow-up question?

Seed Placed Fertilizer – Safe Rates

A reminder that if seedbeds turn dry, the safety margin shrinks when applying seed placed fertilizer.  Seedburn can result from ammonia toxicity and/or salt content of fertilizers.

For nitrogen, our Soil Fertility Guide provided safe guidelines for seed placed urea on cereals and canola across a range of soil types and seed-fertilizer configurations.  With the increased popularity of narrow seed and fertilizer spreads with disk drills, the safe rates are reduced.  For example, safe urea rates for cereals vary from 10 to 25 lb N/ac going from sand to clay soil using disk openers on 6” row spacing.  These guidelines are for moist soil and should be reduced by 50% if seedbed moisture is lower when weather is hot and windy.

The safe rates of seed placed phosphorus depends on the crop, with cereals being quite tolerant compared to soybeans, dry beans and canola.  With a disk drill as described above, cereals can tolerate 50 to 60 lb P2O5/ac as mono ammonium phosphate while rates would be 20 lbs/ac for canola and less for beans.   If there greater seedbed utilization (i.e. narrower rows or a wider seedrow with less fertilizer concentration) rates could be more liberal.

More on these safe rates of fertilizer is posted on Manitoba Agriculture’s website at: http://www.gov.mb.ca/agriculture/crops/soil-fertility/print,safe-rates-of-seed-placed-phosphorus-for-manitoba–narrow-row-and-row-crops.html

 

Respond
Have a follow-up question?

When Should I Start Planting Corn in 2017?

Is it better to plant into cold soils realizing the seed is going to sit there until the soil warms up? Or should corn be planted when soil temperatures are warmer and approaching 10°C?

Planting into cold soils.  Early planting is a component of successful corn production in Manitoba, to maximize yield, obtain high quality and low percent kernel moisture at harvest (which will decrease drying costs), and to ensure the crop is mature before fall frosts.

Cooler soil temperatures can delay the crop’s emergence. Wet conditions added to cold soil temperatures can favor soil pathogen development, increasing seedling disease risks in both germinating seeds and young seedlings. When planting early in the season or when the soil is cold, a planting rate 10% higher than the desired final stand should be considered to compensate for possible increased seedling mortality. As well, when planting into cool soils, other seeding management becomes important, such as good seedbed condition (good soil to seed contact) and planting operations (including planting depth).

For more complete information, visit Manitoba Corn Growers website at http://manitobacorn.ca/plant-corn-wait-warmer-soils/

 

Follow Manitoba Agriculture on:
Twitter: @MBGovAg
YouTube: www.youtube.com/ManitobaAgriculture
Respond
Have a follow-up question?

Spring Options for Applying Nitrogen Fertilizer in 2017

With the wet conditions and delayed harvest experienced in parts of Manitoba in fall 2016, very few farmers were able to complete their fall fertilization program.  Since early seeding is important for optimizing crop yield, producers will be looking for ways to apply their N requirements efficiently without delaying the seeding operation.  In addition, soil reserves of N are variable and margins between crop revenue and input costs are modest; therefore, optimizing nitrogen fertilizer use efficiency is important.  To achieve these objectives for a spring fertilization program will require use of a 4R nutrient stewardship strategy:  applying the right rate of the right fertilizer source, with the right placement and at the right time to minimize losses of fertilizer N to the environment and optimize the crop’s access to the fertilizer.

For more detailed information, see the on-line factsheet at http://www.gov.mb.ca/agriculture/crops/seasonal-reports/pubs/spring-n-options-17.pdf

Submitted by John Heard, Crop Nutrition Specialist, MB Ag

Respond
Have a follow-up question?

Will I be able to improve the grade of my grain by using gravity tables and colour sorters?

Gravity tables and colour sorters have been shown to be an effective way of sorting out fusarium-damaged kernels (FDK) if the grower has the time and money to spend on the method. Gravity tables remove kernels based on density and are effective at removing heavily infected seeds, but can also result in the loss of healthy seed. Optical sorters remove kernels based on visual differences, but the process can be time-consuming and is more suited to hard wheat than soft wheat. Additionally, fusarium-damaged barley and oat do not show significant shrivelling and are not likely to be removed by equipment sorting by density, weight or colour.

It is important to remember that removing FDK (i.e. visibly infected kernels) from a grain sample does not mean that the grain is free of DON, the toxin produced by Fusarium graminearum. The relationship between FDK and DON varies and in years where infection occurs late in anthesis (or even after anthesis), visual symptoms are not always apparent whereas DON levels can still be elevated. While the Canadian Grain Commission grades wheat based on percent FDK, some markets are interested in DON levels. It is important to discuss with grain buyers and/or elevators their guidelines regarding FDK and DON. It is also recommended that growers test their grain for DON to best determine how to market it.

There is newer technology available that sorts grain based on chemical composition using near infrared transmission (NIR). This method is more effective at reducing DON levels because it is not only dependent on visual symptoms on the kernel. The machinery required to sort grain using NIR can be quite expensive to purchase, but is relatively inexpensive to run. For more information on this technology please refer to http://bomill.com/products/.

 

Submitted by

Holly Derksen, Field Crop Pathologist, Manitoba Agriculture

Barbara Ziesman, Provincial Specialist, Plant Disease, Saskatchewan Ministry of Agriculture

Michael Harding, Research Scientist, Plant Pathology, Alberta Agriculture & Forestry

Respond
Have a follow-up question?

Economics & Agronomics – Crop Management Decisions Need Both!

It’s an obvious statement to say successful farm management decisions need both agronomic and economic considerations. Farmers weigh out input cost versus the benefit to yield and quality of grain before making the decisions to buy and use new or additional products.

 Agronomy and economic crop management goes much beyond inputs. Consideration of crop rotation, Cost of Production, seeding date and weather indicators for disease all need to be considered. Within agronomic decisions there can be tools to estimate the economic impacts of different decisions. The ‘My Farm’, ‘Cost of Production’, ‘Canola Reseed Calculator’ and ‘Sclerotinia Treatment Decision Tool’ are all based on yield trends and agronomy to help make economic decisions easier.

See slideshow at http://www.gov.mb.ca/agriculture/business-and-economics/financial-management/pubs/presentation-mac-agronomicseconomics.pdf

Submitted by Roy Arnott – Farm Business Management, Killarney and Anastasia Kubinec – Crops Branch, Carman.

Respond
Have a follow-up question?
,

Waterhemp Now a Manitoba Weed

Can you identify the plants in the two pots below?

waterhemp-and-redroot-pigweed

The plants on the right are redroot pigweed (Amaranthus retroflexus); the plants on the left are waterhemp (Amaranthus tuberculatus).

Unfortunately, the need to distinguish between these closely related weed species has become a reality for Manitoba producers and agronomists since waterhemp was found in the province in the fall of 2016. Suspect plant specimen collected from a soybean field in the RM of Taché was verified as waterhemp by staff with the Agriculture and Agri-Food Canada Collection of Vascular plants in Ottawa.  Waterhemp occurs in neighbouring states and provinces, including Minnesota, North Dakota and Ontario.

Both species thrive in agricultural fields where they compete with crops for nutrients, moisture and light. Waterhemp has no hairs on its stem or leaves, which can be used to distinguish it from redroot pigweed when plants are small.  The lack of hairs give waterhemp leaves a ‘glossy’ look unlike that of the ‘dull’ green leaves of redroot pigweed.  Also, waterhemp leaves are lanceolate in shape (longer than they are wide) compared to the more ovate leaves of redroot pigweed.  Colour is not a reliable identifying characteristic since both species can be green, red or variations of the two colours.

Mature waterhemp plants tend to be more branched than redroot pigweed. And unlike redroot pigweed, which has male and female flowers on the same plant, waterhemp has separate male and female plants.  Waterhemp inflorescence are long, slender and vary in colour compared with the compact, prickly inflorescence of redroot pigweed.  Like most pigweeds, waterhemp is a prolific seed producer with up to a million seeds per plant (under ideal conditions).

Waterhemp populations resistant to group 2, group 9 (glyphosate) and group 2+9 exist throughout the US, including Minnesota and North Dakota, and in Ontario. Seed from one of the plants found in Manitoba have been sent to Ontario for resistance testing.

Information on waterhemp will be added to Manitoba Agriculture’s weeds webpage shortly (http://www.gov.mb.ca/agriculture/crops/weeds/) and will be included at the Weed Seedling Identification Day (hosted by the Manitoba Weed Supervisors Association).  Manitoba Agriculture staff will conduct a waterhemp surveillance program in and around the RM of Taché in 2017.

Additional information on waterhemp is available at: http://www.extension.purdue.edu/extmedia/BP/gwc-13.pdf (excluding herbicide recommendations).

waterhemp-tone-ag-consulting

Photo: Waterhemp in Manitoba, Tone Ag Consulting

Submitted by: Jeanette Gaultier, Provincial Weed Specialist, Manitoba Agriculture

Respond
Have a follow-up question?

Many Options to View Current & Past Editions of Seed Manitoba

Did you know you can view the 2017 edition of Seed Manitoba, as well as past editions, on www.seedmb.ca?  Well, you can!

Flip-view digital editions of the current guide (2017), as well as the six most recent editions, are available at http://www.seedmb.ca/digital-edition/.

digital-editions-screenshot-of-seedmb

Screen shot of digital editions of Seed Manitoba on www.seedmb.ca

Also, full PDF versions are available at http://www.seedmb.ca/digital-edition/pdf-editions-and-separate-section-pdfs/ where you can download the entire edition, or the commodity section you are most interested in.

pdf-versions-of-seedmb

Screen shot of PDF versions of Seed Manitoba on www.seedmb.ca

Seed Manitoba is a collaboration of Manitoba Agriculture, Manitoba Seed Growers’ Association and Farm Business Communication.

Respond
Have a follow-up question?
,

A Look at FDK & DON in Winter Wheat Varieties

In 2014, a study was initiated to evaluate how winter wheat varieties being tested post-registration by MCVET respond to fusarium head blight under non-misted conditions (natural infection) by assessing harvested samples for fusarium damaged kernels (FDK) and deoxynivalenol (DON) accumulation. The results from 2014 can be found here: Winter Wheat Varieties Response to Fusarium Head Blight in 2014 and Effect of Fusarium Head Blight on Winter Wheat Varieties in 2014.

2015 Results. With funding from Winter Cereals Manitoba Inc., the study continued in 2015. Composite samples of eight registered winter wheat varieties were collected from the three replicates at four MCVET sites: Carman, Hamiota, Melita & Minto.  BioVision Seed Labs in Winnipeg, Manitoba conducted the analysis. The level of FDK (%) was measured as per the Official Grain Grading Guide of the Canadian Grain Commission. The accumulation of DON (ppm) was measured using the ELISA test method.

The variety Emerson, rated as Resistant (R), had lower levels of FDK and DON compared to the other varieties (see Figure 1).  Some varieties rated as Susceptible (S) consistently showed higher FHB severity, FDK and DON levels across all sites. However, data also shows there is variability of performance within the five resistance categories of Resistant (R) to Susceptible (S).

Figure 1: Average Levels of Fusarium Damaged Kernel (FDK) and Deoxynivalenol (DON) by Winter Wheat Variety at Four MCVET Sites in 2015

2015-average-don-fdk-at-four-mcvet-winter-wheat-sites

Figure 2: Fusarium Damaged Kernel (FDK) and Deoxynivalenol (DON) Comparisons at Four MCVET Sites for Winter Wheat Varieties in 2015.

2015-fdk-don-comparisons-at-four-mcvet-winter-wheat-sites

 

2016 Results. In the 2016 Manitoba Fusarium Head Blight Survey, the average FHB index for winter wheat was 2.7% which was slightly below the 10-year-average (3.1%).  Winter Cereals Manitoba Inc. again is providing funding to have the MCVET winter wheat varieties tested for FDK and DON. Analysis is currently underway and results should be available for the Winter Cereals Manitoba Inc. Annual General Meeting on March 15, 2017.

Summary. Extensive research over the past 20 years shows using multiple management options, including crop rotation, fungicide application and variety selection, is the best way to mitigate the risk of FHB. Although FHB infection will always be highly influenced by environment, the first step is to select varieties with improved resistance and then use them in combination with other management strategies. In years where there is higher disease pressure, such as 2014, variety selection will be critical to minimize the impact of FHB on yield and quality. However, under high disease pressure yield and quality loss due to FHB can still happen in varieties that have improved resistance as resistance does not equal immunity.

Remember, caution must be used with one year of data, as presented here. Using data derived over two or more growing seasons over multiple sites is always recommended to provide the best indicator of variety performance.

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Special thanks to: Winter Cereals Manitoba Inc. for providing funding to conduct FDK & DON analysis; BioVision Seed Labs who conducted the FDK and DON analysis; Manitoba Crop Variety Evaluation Team (MCVET) & contractors who provided the harvested samples.

Respond
Have a follow-up question?

Updated Cereal/Oilseed/Pulse Maps for Yield, Acreage and Seeding Date Now Available

Manitoba Agriculture’s Crop Industry Branch and MASC has updated and posted yield, acreage and seeding date maps for cereal, oilseed and pulse crops at https://www.masc.mb.ca/masc.nsf/mmpp_index.html

The maps can be found at the link above under the heading “Thematic Crop Maps“‎. Time frame in most cases is 2006 to 2015 (10 year), but 2011 to 2015 is also available for soybean, feed wheat and corn to reflect the acreage changes that occurred in the past 5 years.

Many thanks to Doug Wilcox‎ from MASC for the database, and Les Mitchell and Natalie Azure from the Crop Industry Branch who developed and created the maps for this project.

 

Respond
Have a follow-up question?