What is Waterpod?

Waterpod is:

  1. an annual weed occasionally found in agricultural fields;
  2. a mobile irrigation system; or
  3. a one person submarine?

 

 

If you chose a), you’d be right. Waterpod (Ellisia nyctelea L.) is an annual broadleaf plant native to Manitoba.  It’s often found in shaded, wooded areas but can also thrive in ditches and agricultural fields.  Our wet soils and cool spring must have provided ideal conditions for waterpod emergence as it’s being found in abundance in fields across the province.

The good news is waterpod isn’t much of agricultural pest.  Although it’s an annual, it emerges and flowers early and usually dies off in June.  It’s also very susceptible to glyphosate and most other burn-off and post-emergent herbicides.

Identifying characteristics:

  • oval cotyledons with a flat top;
  • deeply lobed and hairy leaves;
  • small, white 5-petaled flowers.

 

Respond
Have a follow-up question?

How Can I Reduce Fertilizer Losses in Dry Spring Soils?

Dry spring weather is great for seeding but may play havoc with some fertilizer applications and losses.

1.Seedplaced fertilizer – Where seedbed moisture is low or when weather is hot and windy, reduce the rates of seedplaced nitrogen  by approximately 50 per cent. Table 7 of the Manitoba Soil Fertility Guide  http://www.gov.mb.ca/agriculture/crops/soil-fertility/soil-fertility-guide/nitrogen.html indicates safe rates of seedplaced urea under different soil texture, moisture and seedbed utilization conditions.  But as conditions dry, these rates should be reduced accordingly.

2.Surface applied urea or urea-forms (like UAN solution 28-0-0) – are vulnerable to volatilization losses.  The soil and environmental factors increasing risk of loss are well known and include:moist soil conditions, followed by rapid drying

  • high wind velocity
  • warm soil temperatures
  • high soil pH (> pH 7.5)
  • high lime content in surface soil
  • coarse soil texture (sandy)
  • low organic matter content
  • high amount of surface residue (Zero Till)

Volatilization losses can be reduced with dribble placement of UAN versus broadcast applications and the use of an urease inhibitor.  The active ingredient NBPT used in Agrotain Ultra is now marketed by a number of companies.  To expect the same level of protection as Agrotain Ultra, ensure the application rate is similar, since formulation strength and recommended rates differ among suppliers.  Agrotain Ultra contains 27% NBPT with an application rate of 3.1 l/tonne urea or 1.6 l/tonne UAN.

3. Last year the lack of rainfall through much of May left surface applied nitrogen stranded at the surface.  If possible, a portion of the crops nitrogen for cereals and canola should be in-soil placed.  In season applications should be targeted prior to stem elongation of cereals and bolting of canola.

 

 

 

Respond
Have a follow-up question?

Manitoba Ag Weather Network

Manitoba Agriculture has a number of weather stations across the province that measure air/soil temperature, soil moisture, wind direction and speed.  For local information please visit

Central/East/Interlake Regions: http://www.gov.mb.ca/agriculture/weather/current-conditions-summary1.html

Southwest/Northwest Regions: http://www.gov.mb.ca/agriculture/weather/current-conditions-summary2.html

Previous Day on Highs/Lows and Average Soil Temperature at:

Central/Easter/Interlake:http://www.gov.mb.ca/agriculture/weather/yesterdays-summary1.html  Southwest/Northwest: http://www.gov.mb.ca/agriculture/weather/yesterdays-summary2.html

Another useful application of the data gathered by the network for rainfall can be found at Rain Watch http://www.gov.mb.ca/agriculture/weather/rain-watch.html

 

 

Respond
Have a follow-up question?

Seeding for Target Plant Stands, not lbs/ac

Seed can be an expensive input, but a poor crop stand can be lost profit.  To maximize your seed, still get the stand needed to optimize yield, start calculating the real seeding rate needed for the plant stand desired and not gauging seeding rate by lbs/ac or bu/ac.

The following are the standard recommendations for FINAL plant stand, not what you are putting in the ground. Germination, TKW and mortality are very important to use in the equation to determine actual seeds/ac to plant.  For example, if you assume your germination is 96% and its only 85% and conditions turn cold and wet (increasing mortality), you may have a lot thinner stand than you anticipated (which could mean a harder time controlling weeds).

                    Grain Crops                               Oilseed Crops                   Pulse Crops        
Barley Wheat Oat Corn Canola Sunflower Flax Peas Soybean Dry Bean*
Plants/ft2 22-25 23-28 18-23 7-14 37-56 7-9
 Plants/ac (1000s) 26-30 18-22 180-210 85-100
Mortality Rates (%) 10-15 10-15 10-15 10-15 20-60 10 40-50 5-15 5-10 5-10

*Navy Bean = pinto beans on lower end and navy bean require higher plant stands

Source:  Manitoba Agriculture, Canola Council of Canada, Flax Council of Canada, Ontario Ministry of Agriculture, Food and Rural Affairs

 Seeding Rate (lbs/ac) = target plant stand/ft2 x TKW (g) / % expected seed survival x 10                       

 e.g. FLAX Seeding Rate= 45 plants/ft2 x  5g (TKW) / ((88% germination x (1- 40% mortality)) X 10 = 43 lbs/ac

Other information

Wheat – http://www.gov.mb.ca/agriculture/crops/production/print,aiming-for-higher-wheat-yields.html

Using 1000 Kernel Weight for Calculating Seeding Rates – http://www1.agric.gov.ab.ca/%24department/deptdocs.nsf/all/agdex81

Canola – http://www.canolacouncil.org/canola-encyclopedia/crop-establishment/seeding-rate/

Optimizing Plant Establishment – http://www.gov.mb.ca/agriculture/crops/production/pubs/optimizing-stand-establishment-in-less-than-optimal-conditions.pdf

 

Respond
Have a follow-up question?

Crop Germination – What Soil Temperatures are Needed?

Soil temperature drives germination and seedling emergence, so how cold is too cold?  What is your soil temperature at your targeted seeding depth….today? Finally, when should you be measuring the soil temperature?

The following are the minimum temperatures needed for germination to begin in various crops.  These values should be regarded as approximate, since germination depends on factors other than just temperature.  But, if soils are too cool, germination will be delayed and cause uneven or poor seedling emergence.

 

Crop Temperature     (°C)
Wheat 4
Barley 3
Oats 5
Corn 10
Canola 5
Flax 9
Sunflower 6
Edible Beans 10
Peas 4
Soybeans 10

Sources: North Dakota State University Extension Service, Alberta Agriculture & Rural Development and Canola Council of Canada

Getting an accurate measure on soil temperature

Determine how deep you will be seeding. Then place your soil thermometer at the targeted depth. Take two measurements throughout the day: one in the morning (8am) and one in the early evening (8pm).  Average the two readings to determine the average soil temperature. The recommendation is to take readings for two to three days to establish a multiple day average and to measure at a number of locations in the field, to account for field variability.

Still not sure and short on time?  See the soil temperature data for various locations across Manitoba from the MB Ag-Weather Program: https://www.gov.mb.ca/agriculture/weather/soil-temperature.html.  This can be used as a guideline for an area, but in-field measurements are going to tell you what is actually going on in your field!

 

Respond
Have a follow-up question?

Seed Placed Fertilizer – Safe Rates

A reminder that if seedbeds turn dry, the safety margin shrinks when applying seed placed fertilizer.  Seedburn can result from ammonia toxicity and/or salt content of fertilizers.

For nitrogen, our Soil Fertility Guide provided safe guidelines for seed placed urea on cereals and canola across a range of soil types and seed-fertilizer configurations.  With the increased popularity of narrow seed and fertilizer spreads with disk drills, the safe rates are reduced.  For example, safe urea rates for cereals vary from 10 to 25 lb N/ac going from sand to clay soil using disk openers on 6” row spacing.  These guidelines are for moist soil and should be reduced by 50% if seedbed moisture is lower when weather is hot and windy.

The safe rates of seed placed phosphorus depends on the crop, with cereals being quite tolerant compared to soybeans, dry beans and canola.  With a disk drill as described above, cereals can tolerate 50 to 60 lb P2O5/ac as mono ammonium phosphate while rates would be 20 lbs/ac for canola and less for beans.   If there greater seedbed utilization (i.e. narrower rows or a wider seedrow with less fertilizer concentration) rates could be more liberal.

More on these safe rates of fertilizer is posted on Manitoba Agriculture’s website at: http://www.gov.mb.ca/agriculture/crops/soil-fertility/print,safe-rates-of-seed-placed-phosphorus-for-manitoba–narrow-row-and-row-crops.html

 

Respond
Have a follow-up question?

Spring Options for Applying Nitrogen Fertilizer in 2017

With the wet conditions and delayed harvest experienced in parts of Manitoba in fall 2016, very few farmers were able to complete their fall fertilization program.  Since early seeding is important for optimizing crop yield, producers will be looking for ways to apply their N requirements efficiently without delaying the seeding operation.  In addition, soil reserves of N are variable and margins between crop revenue and input costs are modest; therefore, optimizing nitrogen fertilizer use efficiency is important.  To achieve these objectives for a spring fertilization program will require use of a 4R nutrient stewardship strategy:  applying the right rate of the right fertilizer source, with the right placement and at the right time to minimize losses of fertilizer N to the environment and optimize the crop’s access to the fertilizer.

For more detailed information, see the on-line factsheet at http://www.gov.mb.ca/agriculture/crops/seasonal-reports/pubs/spring-n-options-17.pdf

Submitted by John Heard, Crop Nutrition Specialist, MB Ag

Respond
Have a follow-up question?

Economics & Agronomics – Crop Management Decisions Need Both!

It’s an obvious statement to say successful farm management decisions need both agronomic and economic considerations. Farmers weigh out input cost versus the benefit to yield and quality of grain before making the decisions to buy and use new or additional products.

 Agronomy and economic crop management goes much beyond inputs. Consideration of crop rotation, Cost of Production, seeding date and weather indicators for disease all need to be considered. Within agronomic decisions there can be tools to estimate the economic impacts of different decisions. The ‘My Farm’, ‘Cost of Production’, ‘Canola Reseed Calculator’ and ‘Sclerotinia Treatment Decision Tool’ are all based on yield trends and agronomy to help make economic decisions easier.

See slideshow at http://www.gov.mb.ca/agriculture/business-and-economics/financial-management/pubs/presentation-mac-agronomicseconomics.pdf

Submitted by Roy Arnott – Farm Business Management, Killarney and Anastasia Kubinec – Crops Branch, Carman.

Respond
Have a follow-up question?
,

Waterhemp Now a Manitoba Weed

Can you identify the plants in the two pots below?

waterhemp-and-redroot-pigweed

The plants on the right are redroot pigweed (Amaranthus retroflexus); the plants on the left are waterhemp (Amaranthus tuberculatus).

Unfortunately, the need to distinguish between these closely related weed species has become a reality for Manitoba producers and agronomists since waterhemp was found in the province in the fall of 2016. Suspect plant specimen collected from a soybean field in the RM of Taché was verified as waterhemp by staff with the Agriculture and Agri-Food Canada Collection of Vascular plants in Ottawa.  Waterhemp occurs in neighbouring states and provinces, including Minnesota, North Dakota and Ontario.

Both species thrive in agricultural fields where they compete with crops for nutrients, moisture and light. Waterhemp has no hairs on its stem or leaves, which can be used to distinguish it from redroot pigweed when plants are small.  The lack of hairs give waterhemp leaves a ‘glossy’ look unlike that of the ‘dull’ green leaves of redroot pigweed.  Also, waterhemp leaves are lanceolate in shape (longer than they are wide) compared to the more ovate leaves of redroot pigweed.  Colour is not a reliable identifying characteristic since both species can be green, red or variations of the two colours.

Mature waterhemp plants tend to be more branched than redroot pigweed. And unlike redroot pigweed, which has male and female flowers on the same plant, waterhemp has separate male and female plants.  Waterhemp inflorescence are long, slender and vary in colour compared with the compact, prickly inflorescence of redroot pigweed.  Like most pigweeds, waterhemp is a prolific seed producer with up to a million seeds per plant (under ideal conditions).

Waterhemp populations resistant to group 2, group 9 (glyphosate) and group 2+9 exist throughout the US, including Minnesota and North Dakota, and in Ontario. Seed from one of the plants found in Manitoba have been sent to Ontario for resistance testing.

Information on waterhemp will be added to Manitoba Agriculture’s weeds webpage shortly (http://www.gov.mb.ca/agriculture/crops/weeds/) and will be included at the Weed Seedling Identification Day (hosted by the Manitoba Weed Supervisors Association).  Manitoba Agriculture staff will conduct a waterhemp surveillance program in and around the RM of Taché in 2017.

Additional information on waterhemp is available at: http://www.extension.purdue.edu/extmedia/BP/gwc-13.pdf (excluding herbicide recommendations).

waterhemp-tone-ag-consulting

Photo: Waterhemp in Manitoba, Tone Ag Consulting

Submitted by: Jeanette Gaultier, Provincial Weed Specialist, Manitoba Agriculture

Respond
Have a follow-up question?

Updated Cereal/Oilseed/Pulse Maps for Yield, Acreage and Seeding Date Now Available

Manitoba Agriculture’s Crop Industry Branch and MASC has updated and posted yield, acreage and seeding date maps for cereal, oilseed and pulse crops at https://www.masc.mb.ca/masc.nsf/mmpp_index.html

The maps can be found at the link above under the heading “Thematic Crop Maps“‎. Time frame in most cases is 2006 to 2015 (10 year), but 2011 to 2015 is also available for soybean, feed wheat and corn to reflect the acreage changes that occurred in the past 5 years.

Many thanks to Doug Wilcox‎ from MASC for the database, and Les Mitchell and Natalie Azure from the Crop Industry Branch who developed and created the maps for this project.

 

Respond
Have a follow-up question?