What is Waterpod?

Waterpod is:

  1. an annual weed occasionally found in agricultural fields;
  2. a mobile irrigation system; or
  3. a one person submarine?

 

 

If you chose a), you’d be right. Waterpod (Ellisia nyctelea L.) is an annual broadleaf plant native to Manitoba.  It’s often found in shaded, wooded areas but can also thrive in ditches and agricultural fields.  Our wet soils and cool spring must have provided ideal conditions for waterpod emergence as it’s being found in abundance in fields across the province.

The good news is waterpod isn’t much of agricultural pest.  Although it’s an annual, it emerges and flowers early and usually dies off in June.  It’s also very susceptible to glyphosate and most other burn-off and post-emergent herbicides.

Identifying characteristics:

  • oval cotyledons with a flat top;
  • deeply lobed and hairy leaves;
  • small, white 5-petaled flowers.

 

Respond
Have a follow-up question?

When to Roll Your Soybeans

Most growers will roll their beans shortly after seeding in order to prevent stones from entering the combine at harvest time and to make harvesting easier and quicker. On dry springs when soil conditions could lead to soil drifting a grower can wait and roll there beans after they are up and are at the first trifoliate stage..

When rolling after emergence

  1. Do not roll at the Hook Stage- This is when beans are first emerging.
  2. Do not roll in the morning wait until air temperature are around 25C before you start to roll to avoid damage to the plants.
  3. Check for damaged plants to ensure plants are not breaking off.
  4. If damage is too sever wait for a warmer day.

 

The attached video outlines some of the reminders about rolling beans.

Soybean School West: Why Rolling Matters & Timing it Right

Respond
Have a follow-up question?

What’s Wrong with My Spruce Trees?!?

Spruce is a common grown shelterbelt tree in Manitoba. They prefer acid soils, that are coarse textured with good drainage, have adequate water and sheltered from extreme weather conditions.  If conditions are not ideal, the trees will begin to decline and become more susceptible to pests.  If your trees are declining and you are considering using a fungicide/insecticide, read the label carefully to make sure the product is registered for use on the trees species and to control the pest identified. Spruce problems can be divided into three categories – Physiological, Disease and Insect.

Physiological

Winter burn or evergreen browning – caused by excessive water loss from the needles. In late winter/early spring, they take on a reddish brown appearance toward their branch tips and/or on one side of the tree.  The south and southwest side may be worse due to more exposure to sun at potentially wind. If conditions are highly favorable for winter burn, buds can also lose moisture and be killed.

Natural Needle Drop – late August or early September, coniferous trees will naturally shed their older needles (usually needles which are 3 or 4 years old or older). During this process, the innermost needles will turn to yellow or brown and drop off. Although this process takes place every year, in some years it becomes more pronounced due to environmental factors. Needle loss can appear to be very dramatic and is often mistaken for a disease or insect problem. Nothing can be done to prevent natural death of needles since they do have a finite life span. Good maintenance can minimize environmental stress.

Competition Stress – if spruce are planted too close to each other, trees can suffer from competition stress. This occurs when the feeder roots from two or more trees take available water and nutrients from the same soil area resulting in slightly stronger trees taking most, while the weaker trees, deprived of water and nutrients, grow poorly and may decline and die. If the branches of two trees are in contact or intertwining, competition stress could be occurring.

Disease

Branch Canker – characterized by browning and death of entire branches. Individual diseased branches can occur anywhere on the tree, although the disease may start on lower branches and move upward. White or grayish crusty or resinous patches appear at the canker site and can also occur on the trunk. Pitch may ooze from these cankers and drip onto lower branches. During wet weather, some cankers can produce spores that disseminate to cause new infections. Pruning out areas affected is the only means of control once the disease has been initiated. Prune when the weather is dry, with pruning tools sterilized between cuts with alcohol (isopropyl alcohol), or a household disinfectant such as Pinesol or Lysol and all diseased material should be removed or destroyed.

Needle Cast – characterised by irregular tan, yellow, red-orange, reddish brown or black spots, specks or bands being produced on the needles from previous seasons of growth. The fungi can infect the new growth from the current season, but do not usually show symptoms on those needles until the following season. Affected needles generally drop early. Twigs of infected trees may appear stunted and may dieback. To prevent spreading, the new needles should be protected by applying a copper fungicide containing copper oxychloride just as growth begins in spring. Repeat applications 3 or 4 times at 10 day intervals. If the planting is not too large, it would be helpful to rake up and remove fallen needles from under the trees to remove them as a source of reinfection. There are currently no fungicides available for home use but fungicides with commercial or agricultural registration are available. Consult with an arborist or tree care service for fungicide options.

Insects

Spider Mites – all evergreen trees have a resident population, but during hot dry spells populations can explode. Visual symptoms start as dingy yellow or dusty needles and progress to brown and dry, then needles drop. There may also be a fine webbing, between the needles. In severe or prolonged infestations, dust particles, shed needles and dead mites catch in the webbing giving the tree an unhealthy appearance. Damage to the tree is caused by both adults and nymphs sucking sap from the needles. Mites can be controlled by using any insecticide listing mites and spruce on the label, at a rate recommended on the label. Dormant oil sprays can also be used to control spider mites. See directions for use on the labels.

Spruce Needle Miner – webbing is produced and may contain dead needles and frass (droppings). Damage is done after tiny larvae hatch from eggs that have been laid along the sides of a needle and begin to chew a hole at the base of it. The insects feed on the needles and exit from the same hole in search of new needles. Full-grown larvae are green with a brown head and are about 6 mm long. The larvae remain active until October when they construct a cocoon inside a nest of dead needles and frass to overwinter.  Adults emerge as small greyish brown moths that have a 12 mm wingspan. If a tree has a large number of needle miner nests it can appear quite unsightly, as airborne material such as dust and poplar cotton become easily caught in them. Heavy infestations can severely weaken the tree through loss of needles. Before bud break in spring, the nests can be washed away with a strong stream of water from a garden hose. The debris should then be gathered and destroyed. This may help to reduce the current year’s infestation.

White Pine Needle Scale  evident by tiny white flecks on the needles that resemble spots of paint. Each white scale contains a dead body of a female scale insect and her overwintering eggs.  During the summer the crawlers moult to become adults after which they begin to secrete a white scale covering. Scale insect feeding damage causes large yellow areas on the needles that can coalesce if the population density becomes excessively high. Sustained heavy attack for 2 or more years can cause trees to lose most of their needles. Insecticides or dormant oil sprays listing spruce and scale insects on the label can be used for control. Follow label directions.

White Pine Weevils – weevils kill the top 2-3 years growth of their host trees. Damage very conspicuous, causing the terminal leader (very top of the tree) to wilt and take on a crook shape, turn brown and die. Located below the damaged area, there can be found small exit holes made by the emerging adult weevils. Adult weevils overwinter in the litter on the ground. There are no insecticides registered for control. Prune and burn infested leaders before mid-July to remove and kill the insects. Cut back all but one live lateral (side) shoot by at least half their lengths to maintain single-stem dominance. Avoid planting the highly susceptible Colorado blue spruce in areas where white pine weevils have previously caused damage.

Spruce Bud Scale heavy infestations can result in twig and branch dieback. The presence of sooty mold on twigs, needles and branches may be the first clue to the presence of the insect. The sooty mold does not cause any damage to the tree but is unsightly and since it is highly visible is often mistaken for the cause of needle and twig dieback if these are occurring in association with the scale infestation.  The female adult scales cluster along the stems of twigs. They closely resemble the buds of the spruce tree, lower branches on the trees are often the most heavily infested. Heavy scale infestations result in discoloration and loss of needles, twig dieback, dieback of lower branches and reduced tree vigour and growth. Infested trees are also reported to be more susceptible to winter injury. Any insecticide listing spruce and scale insects on the label can be applied to reduce damage from this insect. Follow label directions. Insecticides should be applied while the crawlers are still active.

 

 

Respond
Have a follow-up question?

How Can I Reduce Fertilizer Losses in Dry Spring Soils?

Dry spring weather is great for seeding but may play havoc with some fertilizer applications and losses.

1.Seedplaced fertilizer – Where seedbed moisture is low or when weather is hot and windy, reduce the rates of seedplaced nitrogen  by approximately 50 per cent. Table 7 of the Manitoba Soil Fertility Guide  http://www.gov.mb.ca/agriculture/crops/soil-fertility/soil-fertility-guide/nitrogen.html indicates safe rates of seedplaced urea under different soil texture, moisture and seedbed utilization conditions.  But as conditions dry, these rates should be reduced accordingly.

2.Surface applied urea or urea-forms (like UAN solution 28-0-0) – are vulnerable to volatilization losses.  The soil and environmental factors increasing risk of loss are well known and include:moist soil conditions, followed by rapid drying

  • high wind velocity
  • warm soil temperatures
  • high soil pH (> pH 7.5)
  • high lime content in surface soil
  • coarse soil texture (sandy)
  • low organic matter content
  • high amount of surface residue (Zero Till)

Volatilization losses can be reduced with dribble placement of UAN versus broadcast applications and the use of an urease inhibitor.  The active ingredient NBPT used in Agrotain Ultra is now marketed by a number of companies.  To expect the same level of protection as Agrotain Ultra, ensure the application rate is similar, since formulation strength and recommended rates differ among suppliers.  Agrotain Ultra contains 27% NBPT with an application rate of 3.1 l/tonne urea or 1.6 l/tonne UAN.

3. Last year the lack of rainfall through much of May left surface applied nitrogen stranded at the surface.  If possible, a portion of the crops nitrogen for cereals and canola should be in-soil placed.  In season applications should be targeted prior to stem elongation of cereals and bolting of canola.

 

 

 

Respond
Have a follow-up question?

Crop Germination – What Soil Temperatures are Needed?

Soil temperature drives germination and seedling emergence, so how cold is too cold?  What is your soil temperature at your targeted seeding depth….today? Finally, when should you be measuring the soil temperature?

The following are the minimum temperatures needed for germination to begin in various crops.  These values should be regarded as approximate, since germination depends on factors other than just temperature.  But, if soils are too cool, germination will be delayed and cause uneven or poor seedling emergence.

 

Crop Temperature     (°C)
Wheat 4
Barley 3
Oats 5
Corn 10
Canola 5
Flax 9
Sunflower 6
Edible Beans 10
Peas 4
Soybeans 10

Sources: North Dakota State University Extension Service, Alberta Agriculture & Rural Development and Canola Council of Canada

Getting an accurate measure on soil temperature

Determine how deep you will be seeding. Then place your soil thermometer at the targeted depth. Take two measurements throughout the day: one in the morning (8am) and one in the early evening (8pm).  Average the two readings to determine the average soil temperature. The recommendation is to take readings for two to three days to establish a multiple day average and to measure at a number of locations in the field, to account for field variability.

Still not sure and short on time?  See the soil temperature data for various locations across Manitoba from the MB Ag-Weather Program: https://www.gov.mb.ca/agriculture/weather/soil-temperature.html.  This can be used as a guideline for an area, but in-field measurements are going to tell you what is actually going on in your field!

 

Respond
Have a follow-up question?

Seed Placed Fertilizer – Safe Rates

A reminder that if seedbeds turn dry, the safety margin shrinks when applying seed placed fertilizer.  Seedburn can result from ammonia toxicity and/or salt content of fertilizers.

For nitrogen, our Soil Fertility Guide provided safe guidelines for seed placed urea on cereals and canola across a range of soil types and seed-fertilizer configurations.  With the increased popularity of narrow seed and fertilizer spreads with disk drills, the safe rates are reduced.  For example, safe urea rates for cereals vary from 10 to 25 lb N/ac going from sand to clay soil using disk openers on 6” row spacing.  These guidelines are for moist soil and should be reduced by 50% if seedbed moisture is lower when weather is hot and windy.

The safe rates of seed placed phosphorus depends on the crop, with cereals being quite tolerant compared to soybeans, dry beans and canola.  With a disk drill as described above, cereals can tolerate 50 to 60 lb P2O5/ac as mono ammonium phosphate while rates would be 20 lbs/ac for canola and less for beans.   If there greater seedbed utilization (i.e. narrower rows or a wider seedrow with less fertilizer concentration) rates could be more liberal.

More on these safe rates of fertilizer is posted on Manitoba Agriculture’s website at: http://www.gov.mb.ca/agriculture/crops/soil-fertility/print,safe-rates-of-seed-placed-phosphorus-for-manitoba–narrow-row-and-row-crops.html

 

Respond
Have a follow-up question?

When Should I Start Planting Corn in 2017?

Is it better to plant into cold soils realizing the seed is going to sit there until the soil warms up? Or should corn be planted when soil temperatures are warmer and approaching 10°C?

Planting into cold soils.  Early planting is a component of successful corn production in Manitoba, to maximize yield, obtain high quality and low percent kernel moisture at harvest (which will decrease drying costs), and to ensure the crop is mature before fall frosts.

Cooler soil temperatures can delay the crop’s emergence. Wet conditions added to cold soil temperatures can favor soil pathogen development, increasing seedling disease risks in both germinating seeds and young seedlings. When planting early in the season or when the soil is cold, a planting rate 10% higher than the desired final stand should be considered to compensate for possible increased seedling mortality. As well, when planting into cool soils, other seeding management becomes important, such as good seedbed condition (good soil to seed contact) and planting operations (including planting depth).

For more complete information, visit Manitoba Corn Growers website at http://manitobacorn.ca/plant-corn-wait-warmer-soils/

 

Follow Manitoba Agriculture on:
Twitter: @MBGovAg
YouTube: www.youtube.com/ManitobaAgriculture
Respond
Have a follow-up question?

Spring Options for Applying Nitrogen Fertilizer in 2017

With the wet conditions and delayed harvest experienced in parts of Manitoba in fall 2016, very few farmers were able to complete their fall fertilization program.  Since early seeding is important for optimizing crop yield, producers will be looking for ways to apply their N requirements efficiently without delaying the seeding operation.  In addition, soil reserves of N are variable and margins between crop revenue and input costs are modest; therefore, optimizing nitrogen fertilizer use efficiency is important.  To achieve these objectives for a spring fertilization program will require use of a 4R nutrient stewardship strategy:  applying the right rate of the right fertilizer source, with the right placement and at the right time to minimize losses of fertilizer N to the environment and optimize the crop’s access to the fertilizer.

For more detailed information, see the on-line factsheet at http://www.gov.mb.ca/agriculture/crops/seasonal-reports/pubs/spring-n-options-17.pdf

Submitted by John Heard, Crop Nutrition Specialist, MB Ag

Respond
Have a follow-up question?

Will I be able to improve the grade of my grain by using gravity tables and colour sorters?

Gravity tables and colour sorters have been shown to be an effective way of sorting out fusarium-damaged kernels (FDK) if the grower has the time and money to spend on the method. Gravity tables remove kernels based on density and are effective at removing heavily infected seeds, but can also result in the loss of healthy seed. Optical sorters remove kernels based on visual differences, but the process can be time-consuming and is more suited to hard wheat than soft wheat. Additionally, fusarium-damaged barley and oat do not show significant shrivelling and are not likely to be removed by equipment sorting by density, weight or colour.

It is important to remember that removing FDK (i.e. visibly infected kernels) from a grain sample does not mean that the grain is free of DON, the toxin produced by Fusarium graminearum. The relationship between FDK and DON varies and in years where infection occurs late in anthesis (or even after anthesis), visual symptoms are not always apparent whereas DON levels can still be elevated. While the Canadian Grain Commission grades wheat based on percent FDK, some markets are interested in DON levels. It is important to discuss with grain buyers and/or elevators their guidelines regarding FDK and DON. It is also recommended that growers test their grain for DON to best determine how to market it.

There is newer technology available that sorts grain based on chemical composition using near infrared transmission (NIR). This method is more effective at reducing DON levels because it is not only dependent on visual symptoms on the kernel. The machinery required to sort grain using NIR can be quite expensive to purchase, but is relatively inexpensive to run. For more information on this technology please refer to http://bomill.com/products/.

 

Submitted by

Holly Derksen, Field Crop Pathologist, Manitoba Agriculture

Barbara Ziesman, Provincial Specialist, Plant Disease, Saskatchewan Ministry of Agriculture

Michael Harding, Research Scientist, Plant Pathology, Alberta Agriculture & Forestry

Respond
Have a follow-up question?

Economics & Agronomics – Crop Management Decisions Need Both!

It’s an obvious statement to say successful farm management decisions need both agronomic and economic considerations. Farmers weigh out input cost versus the benefit to yield and quality of grain before making the decisions to buy and use new or additional products.

 Agronomy and economic crop management goes much beyond inputs. Consideration of crop rotation, Cost of Production, seeding date and weather indicators for disease all need to be considered. Within agronomic decisions there can be tools to estimate the economic impacts of different decisions. The ‘My Farm’, ‘Cost of Production’, ‘Canola Reseed Calculator’ and ‘Sclerotinia Treatment Decision Tool’ are all based on yield trends and agronomy to help make economic decisions easier.

See slideshow at http://www.gov.mb.ca/agriculture/business-and-economics/financial-management/pubs/presentation-mac-agronomicseconomics.pdf

Submitted by Roy Arnott – Farm Business Management, Killarney and Anastasia Kubinec – Crops Branch, Carman.

Respond
Have a follow-up question?