Spring Cleaning – Include Disposal of Old Malathion!

If malathion is in your shed, it may be time to revisit your inventory. According to a recent advisory issued by Health Canada (http://healthycanadians.gc.ca/recall-alert-rappel-avis/hc-sc/2017/63150a-eng.php), Malathion products purchased prior to June 2016 should not be used. This advisory applies to all products including agricultural and mosquito control products containing malathion. The advisory was issued because over an extended period of time, malathion can convert into a toxic metabolite called isomalathion. This conversion can be faster if label directions for storage are not followed properly. If you are purchasing malathion products in 2017, be sure to check expiry date on the packaging.

What to do with old/obsolete inventory of malathion products?

  1. Malathion products older than one year cannot be used and will need to be disposed.
  2. If agricultural malathion products purchased prior to June 2016 are being used, users must test the product prior to use. Malathion products must be tested at an accredited laboratory and meet the requirements outlined in Health Canada Advisory. Products over a year in storage must be disposed.
  3. For more information on disposal of old/obsolete products, https://www.gov.mb.ca/sd/eal/pesticide/info_pestwaste.pdf

Steps to consider for safe use of pesticide products

  1. Before using any product, including malathion products, confirm the registration status and class of the pesticide product on Pest Management Regulatory Agency’s (PMRA) website or mobile application.
  2. Most restricted class pesticides require a license for purchase and use. Appropriate license must be secured before using a restricted pesticide product. Farmer exemption does not apply for restricted pesticide products.
  3. Verify that the label recommended storage conditions are met.
  4. Follow directions on a pesticide product label.
  5. Obsolete products and empty containers must be disposed properly

Additional questions can be directed to Health Canada (613) 957-2991, 1866-225-0709

Have a follow-up question?

How Can I Reduce Fertilizer Losses in Dry Spring Soils?

Dry spring weather is great for seeding but may play havoc with some fertilizer applications and losses.

1.Seedplaced fertilizer – Where seedbed moisture is low or when weather is hot and windy, reduce the rates of seedplaced nitrogen  by approximately 50 per cent. Table 7 of the Manitoba Soil Fertility Guide  http://www.gov.mb.ca/agriculture/crops/soil-fertility/soil-fertility-guide/nitrogen.html indicates safe rates of seedplaced urea under different soil texture, moisture and seedbed utilization conditions.  But as conditions dry, these rates should be reduced accordingly.

2.Surface applied urea or urea-forms (like UAN solution 28-0-0) – are vulnerable to volatilization losses.  The soil and environmental factors increasing risk of loss are well known and include:moist soil conditions, followed by rapid drying

  • high wind velocity
  • warm soil temperatures
  • high soil pH (> pH 7.5)
  • high lime content in surface soil
  • coarse soil texture (sandy)
  • low organic matter content
  • high amount of surface residue (Zero Till)

Volatilization losses can be reduced with dribble placement of UAN versus broadcast applications and the use of an urease inhibitor.  The active ingredient NBPT used in Agrotain Ultra is now marketed by a number of companies.  To expect the same level of protection as Agrotain Ultra, ensure the application rate is similar, since formulation strength and recommended rates differ among suppliers.  Agrotain Ultra contains 27% NBPT with an application rate of 3.1 l/tonne urea or 1.6 l/tonne UAN.

3. Last year the lack of rainfall through much of May left surface applied nitrogen stranded at the surface.  If possible, a portion of the crops nitrogen for cereals and canola should be in-soil placed.  In season applications should be targeted prior to stem elongation of cereals and bolting of canola.




Have a follow-up question?

Manitoba Crop Report #2 – May 8, 2017

Warm, dry and windy weather have prevailed across much on the province, allowing for field accessibility for field work and seeding. It is estimated 20-25% of seeding is complete, with cereal planting most advanced and field peas, canola, corn also being seeded. For to complete report, visit:  http://www.gov.mb.ca/agriculture/crops/seasonal-reports/crop-report-archive/crop-report-2017-05-08.html

Manitoba Ag Weather Network

Manitoba Agriculture has a number of weather stations across the province that measure air/soil temperature, soil moisture, wind direction and speed.  For local information please visit

Central/East/Interlake Regions: http://www.gov.mb.ca/agriculture/weather/current-conditions-summary1.html

Southwest/Northwest Regions: http://www.gov.mb.ca/agriculture/weather/current-conditions-summary2.html

Previous Day on Highs/Lows and Average Soil Temperature at:

Central/Easter/Interlake:http://www.gov.mb.ca/agriculture/weather/yesterdays-summary1.html  Southwest/Northwest: http://www.gov.mb.ca/agriculture/weather/yesterdays-summary2.html

Another useful application of the data gathered by the network for rainfall can be found at Rain Watch http://www.gov.mb.ca/agriculture/weather/rain-watch.html



Have a follow-up question?

Seeding for Target Plant Stands, not lbs/ac

Seed can be an expensive input, but a poor crop stand can be lost profit.  To maximize your seed, still get the stand needed to optimize yield, start calculating the real seeding rate needed for the plant stand desired and not gauging seeding rate by lbs/ac or bu/ac.

The following are the standard recommendations for FINAL plant stand, not what you are putting in the ground. Germination, TKW and mortality are very important to use in the equation to determine actual seeds/ac to plant.  For example, if you assume your germination is 96% and its only 85% and conditions turn cold and wet (increasing mortality), you may have a lot thinner stand than you anticipated (which could mean a harder time controlling weeds).

                    Grain Crops                               Oilseed Crops                   Pulse Crops        
Barley Wheat Oat Corn Canola Sunflower Flax Peas Soybean Dry Bean*
Plants/ft2 22-25 23-28 18-23 7-14 37-56 7-9
 Plants/ac (1000s) 26-30 18-22 180-210 85-100
Mortality Rates (%) 10-15 10-15 10-15 10-15 20-60 10 40-50 5-15 5-10 5-10

*Navy Bean = pinto beans on lower end and navy bean require higher plant stands

Source:  Manitoba Agriculture, Canola Council of Canada, Flax Council of Canada, Ontario Ministry of Agriculture, Food and Rural Affairs

 Seeding Rate (lbs/ac) = target plant stand/ft2 x TKW (g) / % expected seed survival x 10                       

 e.g. FLAX Seeding Rate= 45 plants/ft2 x  5g (TKW) / ((88% germination x (1- 40% mortality)) X 10 = 43 lbs/ac

Other information

Wheat – http://www.gov.mb.ca/agriculture/crops/production/print,aiming-for-higher-wheat-yields.html

Using 1000 Kernel Weight for Calculating Seeding Rates – http://www1.agric.gov.ab.ca/%24department/deptdocs.nsf/all/agdex81

Canola – http://www.canolacouncil.org/canola-encyclopedia/crop-establishment/seeding-rate/

Optimizing Plant Establishment – http://www.gov.mb.ca/agriculture/crops/production/pubs/optimizing-stand-establishment-in-less-than-optimal-conditions.pdf


Have a follow-up question?

Crop Germination – What Soil Temperatures are Needed?

Soil temperature drives germination and seedling emergence, so how cold is too cold?  What is your soil temperature at your targeted seeding depth….today? Finally, when should you be measuring the soil temperature?

The following are the minimum temperatures needed for germination to begin in various crops.  These values should be regarded as approximate, since germination depends on factors other than just temperature.  But, if soils are too cool, germination will be delayed and cause uneven or poor seedling emergence.


Crop Temperature     (°C)
Wheat 4
Barley 3
Oats 5
Corn 10
Canola 5
Flax 9
Sunflower 6
Edible Beans 10
Peas 4
Soybeans 10

Sources: North Dakota State University Extension Service, Alberta Agriculture & Rural Development and Canola Council of Canada

Getting an accurate measure on soil temperature

Determine how deep you will be seeding. Then place your soil thermometer at the targeted depth. Take two measurements throughout the day: one in the morning (8am) and one in the early evening (8pm).  Average the two readings to determine the average soil temperature. The recommendation is to take readings for two to three days to establish a multiple day average and to measure at a number of locations in the field, to account for field variability.

Still not sure and short on time?  See the soil temperature data for various locations across Manitoba from the MB Ag-Weather Program: https://www.gov.mb.ca/agriculture/weather/soil-temperature.html.  This can be used as a guideline for an area, but in-field measurements are going to tell you what is actually going on in your field!


Have a follow-up question?

Seed Placed Fertilizer – Safe Rates

A reminder that if seedbeds turn dry, the safety margin shrinks when applying seed placed fertilizer.  Seedburn can result from ammonia toxicity and/or salt content of fertilizers.

For nitrogen, our Soil Fertility Guide provided safe guidelines for seed placed urea on cereals and canola across a range of soil types and seed-fertilizer configurations.  With the increased popularity of narrow seed and fertilizer spreads with disk drills, the safe rates are reduced.  For example, safe urea rates for cereals vary from 10 to 25 lb N/ac going from sand to clay soil using disk openers on 6” row spacing.  These guidelines are for moist soil and should be reduced by 50% if seedbed moisture is lower when weather is hot and windy.

The safe rates of seed placed phosphorus depends on the crop, with cereals being quite tolerant compared to soybeans, dry beans and canola.  With a disk drill as described above, cereals can tolerate 50 to 60 lb P2O5/ac as mono ammonium phosphate while rates would be 20 lbs/ac for canola and less for beans.   If there greater seedbed utilization (i.e. narrower rows or a wider seedrow with less fertilizer concentration) rates could be more liberal.

More on these safe rates of fertilizer is posted on Manitoba Agriculture’s website at: http://www.gov.mb.ca/agriculture/crops/soil-fertility/print,safe-rates-of-seed-placed-phosphorus-for-manitoba–narrow-row-and-row-crops.html


Have a follow-up question?

When Should I Start Planting Corn in 2017?

Is it better to plant into cold soils realizing the seed is going to sit there until the soil warms up? Or should corn be planted when soil temperatures are warmer and approaching 10°C?

Planting into cold soils.  Early planting is a component of successful corn production in Manitoba, to maximize yield, obtain high quality and low percent kernel moisture at harvest (which will decrease drying costs), and to ensure the crop is mature before fall frosts.

Cooler soil temperatures can delay the crop’s emergence. Wet conditions added to cold soil temperatures can favor soil pathogen development, increasing seedling disease risks in both germinating seeds and young seedlings. When planting early in the season or when the soil is cold, a planting rate 10% higher than the desired final stand should be considered to compensate for possible increased seedling mortality. As well, when planting into cool soils, other seeding management becomes important, such as good seedbed condition (good soil to seed contact) and planting operations (including planting depth).

For more complete information, visit Manitoba Corn Growers website at http://manitobacorn.ca/plant-corn-wait-warmer-soils/


Follow Manitoba Agriculture on:
Twitter: @MBGovAg
YouTube: www.youtube.com/ManitobaAgriculture
Have a follow-up question?

Spring Options for Applying Nitrogen Fertilizer in 2017

With the wet conditions and delayed harvest experienced in parts of Manitoba in fall 2016, very few farmers were able to complete their fall fertilization program.  Since early seeding is important for optimizing crop yield, producers will be looking for ways to apply their N requirements efficiently without delaying the seeding operation.  In addition, soil reserves of N are variable and margins between crop revenue and input costs are modest; therefore, optimizing nitrogen fertilizer use efficiency is important.  To achieve these objectives for a spring fertilization program will require use of a 4R nutrient stewardship strategy:  applying the right rate of the right fertilizer source, with the right placement and at the right time to minimize losses of fertilizer N to the environment and optimize the crop’s access to the fertilizer.

For more detailed information, see the on-line factsheet at http://www.gov.mb.ca/agriculture/crops/seasonal-reports/pubs/spring-n-options-17.pdf

Submitted by John Heard, Crop Nutrition Specialist, MB Ag

Have a follow-up question?

Will I be able to improve the grade of my grain by using gravity tables and colour sorters?

Gravity tables and colour sorters have been shown to be an effective way of sorting out fusarium-damaged kernels (FDK) if the grower has the time and money to spend on the method. Gravity tables remove kernels based on density and are effective at removing heavily infected seeds, but can also result in the loss of healthy seed. Optical sorters remove kernels based on visual differences, but the process can be time-consuming and is more suited to hard wheat than soft wheat. Additionally, fusarium-damaged barley and oat do not show significant shrivelling and are not likely to be removed by equipment sorting by density, weight or colour.

It is important to remember that removing FDK (i.e. visibly infected kernels) from a grain sample does not mean that the grain is free of DON, the toxin produced by Fusarium graminearum. The relationship between FDK and DON varies and in years where infection occurs late in anthesis (or even after anthesis), visual symptoms are not always apparent whereas DON levels can still be elevated. While the Canadian Grain Commission grades wheat based on percent FDK, some markets are interested in DON levels. It is important to discuss with grain buyers and/or elevators their guidelines regarding FDK and DON. It is also recommended that growers test their grain for DON to best determine how to market it.

There is newer technology available that sorts grain based on chemical composition using near infrared transmission (NIR). This method is more effective at reducing DON levels because it is not only dependent on visual symptoms on the kernel. The machinery required to sort grain using NIR can be quite expensive to purchase, but is relatively inexpensive to run. For more information on this technology please refer to http://bomill.com/products/.


Submitted by

Holly Derksen, Field Crop Pathologist, Manitoba Agriculture

Barbara Ziesman, Provincial Specialist, Plant Disease, Saskatchewan Ministry of Agriculture

Michael Harding, Research Scientist, Plant Pathology, Alberta Agriculture & Forestry

Have a follow-up question?