Updated Cereal/Oilseed/Pulse Maps for Yield, Acreage and Seeding Date Now Available

Manitoba Agriculture’s Crop Industry Branch and MASC has updated and posted yield, acreage and seeding date maps for cereal, oilseed and pulse crops at https://www.masc.mb.ca/masc.nsf/mmpp_index.html

The maps can be found at the link above under the heading “Thematic Crop Maps“‎. Time frame in most cases is 2006 to 2015 (10 year), but 2011 to 2015 is also available for soybean, feed wheat and corn to reflect the acreage changes that occurred in the past 5 years.

Many thanks to Doug Wilcox‎ from MASC for the database, and Les Mitchell and Natalie Azure from the Crop Industry Branch who developed and created the maps for this project.

 

Respond
Have a follow-up question?

The Slow Dry Down & Harvest of the 2016 Grain Corn Crop

Modified from a previous Crop Chatter post made November 18, 2014.

November is here and there remains grain corn to be harvested in some parts of Manitoba. In some cases, moisture contents are still higher than wanted or wet field conditions are hampering progress. But with winter approaching, many are opting to harvest under the less than ideal conditions.

What are normal dry down rates in corn? The best dry down rates are in September. Under good weather conditions from the mid to end of September, dry down rates can vary from 0.75 to 1.0% per day (can be greater in some cases when conditions are warm, sunny and dry, or zero on cool, rainy days!). Into early October, dry down ranges from 0.5% to 0.75% per day. In late October, dry down rate will decrease to less than 0.33% per day. And into November, dry down rate will further decrease to 0.15% per day to negligible amounts.

It is important to keep in mind that moisture loss for any particular day may be higher or lower depending on the temperature, relative humidity, sunshine, wind or rain conditions that day.

However, regardless of kernel moisture content in November, if left standing the crop can dry down throughout the winter months to moisture contents below 20%.

Potential Yield Loss.  If the crop remains out longer than anticipated and into the winter months, potential yield loss will depend on many factors, including stalk strength, ear drop, snow cover or wildlife damage. Ear drop will vary by hybrid and environmental conditions as well as the amount of grain on the ear (smaller ears should stay attached better than larger ears).  Stalk strength should also be considered when evaluating harvest timing (and this includes assessments of stalk rots). Compromised stalk strength could lead to increased stalk breakage, resulting in lost yield.

If winter conditions are cool with minimal snowfall, then corn will continue to dry and can be harvested throughout the winter.

If you do find yourself in the position of needing/wanting to overwinter your corn, please touch base with your local MASC agent.

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Manitoba Agriculture on Twitter: @MBGovAg
Manitoba Agriculture on YouTube: www.youtube.com/ManitobaAgriculture
Manitoba Agriculture website: www.manitoba.ca/agriculture

 

Respond
Have a follow-up question?

Weather & Hybrid Characteristics – Their Roles in Grain Corn Dry Down

Updated from Crop Chatter Posts Made in 2012 and 2015

Grain corn in Manitoba is maturing quickly, and some of the earliest maturing fields have reached physiological maturity. Normal plant processes and weather conditions are the major influences on grain dry down, although hybrid characteristics can also play a role. As corn harvest approaches, a quick review of the facts concerning grain drydown might be helpful.

Grain drydown can be separated into two stages: the grain fill period and after physiological maturity.

Drydown During Grain Fill. The grain fill stages (R1 to R5) begins at flowering and is completed at physiological maturity. Grain filling is characterized by the rapid accumulation of dry matter in the kernel and the rapid movement of water out of the kernel.  Decreases in kernel moisture occur from a combination of actual water loss (evaporation) from the kernel surface and the accumulation of dry matter.  The corn plant uses “internal plumbing” to move water out of the kernel since water movement out of the kernel is regulated by how much dry matter is being forced into the kernel.  The corn plant is much more efficient in removing water from the kernel using its “internal plumbing” instead of physical evaporation through the kernel surface.

Drydown After Physiological Maturity. Physiological maturity (R6) occurs when kernel moisture is at approximately 30% (but can vary).  At this stage of growth, a layer of cells at the base of the kernel dies and turns black (hence black layer), the “internal plumbing” is therefore disconnected, and a barrier is formed between the kernel and the corn plant.  For this reason, post-maturity grain moisture loss occurs primarily by evaporative loss from the kernel itself. Research many years ago established that post-maturity moisture loss through the kernel connective tissues (placental tissues) back to the cob is essentially non-existent.

Role of Weather. As moisture loss after maturity is due to physical evaporation, field drying of mature corn grain is influenced primarily by weather factors, especially temperature and humidity.  In simple terms, warmer temperatures and lower humidity encourage rapid field drying of corn grain.

Because moisture loss is greatest just after physiological maturity, both because the weather is usually warmer and because wet kernels lose water more easily, it stands to reason that a corn crop that matures earlier in the season will dry down faster than a crop that matures later in the season.  However, it is important to keep in mind that grain moisture loss for any particular day may be quite high or low depending on the exact temperature, humidity, sunshine, or rain conditions that day. It is not unheard of for grain moisture to decline more than one percentage point per day for a period of days when conditions are warm, sunny and dry. By the same token, there may be zero dry down on cool, rainy days.

Role of Hybrid Characteristics.  A number of hybrid characteristics can influence the rate of dry down, but to a lesser degree than weather. However, when weather conditions are not favorable for rapid grain dry down, hybrid characteristics that influence the rate of grain drying become more important.  The relative importance of each trait varies throughout the duration of the field dry down process and, as mentioned earlier, is most influential when weather conditions are not conducive for rapid grain drying.

  • Husk Leaf Number. The fewer the number of husk leaves, the more rapid the grain moisture loss.
  • Husk Leaf Thickness. The thinner the husk leaves, the more rapid the grain moisture loss.
  • Husk Leaf Senescence. The sooner the husk leaves senesce (die), the more rapid the grain moisture loss.
  • Husk Coverage of the Ear. The less the husk covers the tip of the ear, the more rapid the grain moisture loss.
  • Husk Tightness. The looser the husk covers the ear, the more rapid the grain moisture loss.
  • Ear Declination. The sooner the ears drop from an upright position to a downward position, the more rapid the grain moisture loss.
  • Cob Diameter. The narrower the cob diameter, the more rapid the grain moisture loss.
  • Kernel Type.  Flint-dent kernel types tend to dry down slower in comparison to dent kernel types due to the harder nature of the kernel.

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Manitoba Agriculture on Twitter: @MBGovAg
Manitoba Agriculture on YouTube: www.youtube.com/ManitobaAgriculture
Manitoba Agriculture website: www.manitoba.ca/agriculture
Respond
Have a follow-up question?

Tips to Marketing Downgraded Crops

Over the past few weeks, we’ve heard about the impact of the poor weather conditions over the harvest period on the quality of harvested grain.  With the crop off the field and into the bin, marketing now becomes the focus of many producers.

In the attached article (updated from 2014) by Gary Smart, Farm Management Specialist with Manitoba Agriculture, he provides excellent information to cope with downgraded crops.  Some highlights include:

  • When marketing poor quality grain, be prepared and don’t panic, especially right at harvest time.
  • Know the quality and find a buyer who will offer the best value.
  • Take good samples. Without thorough samples, it is tough to know what is actually in the bin.
  • Communicate with the buyer if already some of this year’s crop is already contracted.
  • Unless cash flow is an issue on the farm, being patient could be the best action to take as new markets may arise for poor quality grain.

ARTICLE: Marketing Poor Quality Grain (2016)

For further information, support and resources, contact the Manitoba Agriculture’s Farm Management Team at http://www.gov.mb.ca/agriculture/business-and-economics/farm-business-management-contacts.html

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Respond
Have a follow-up question?

Canadian Grain Commission’s Harvest Sample Program

write-env-l

Photo Credit: Canadian Grain Commission

Mitchell Japp, the Provincial Cereal Crops Specialist with the Saskatchewan Ministry of Agriculture, recently wrote an article on the Canadian Grain Commission’s Harvest Sample Program – what it is, how to request a sample kit in order to submit a harvest sample, and getting results.  The complete article is available here: Harvest Sample Program.

The CGC is providing a valuable service to individual farmers and industry with the Harvest Sample Program, but it takes participation for it to work.  I would encourage Crop Chatter subscribers to click on the link and read Mitchell’s article!

 

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

For more information, visit the Canadian Grain Commission page.
Respond
Have a follow-up question?

Estimating Harvest Losses in Cereals – Don’t Just Rely on the Grain Loss Monitor!

UPDATED FROM ARTICLE POSTED ON AUGUST 12, 2015

Winter wheat and fall rye harvest is underway in Manitoba. Since final yields aren’t determined until the crop is in the bin, attention now has to be focused on the harvest operation. Grain loss at harvesting time is a direct loss of income. The more grain saved, the greater the returns. The following information comes from 2 articles: ‘Grain Harvest Losses’ by V. Hofman with edits by Dr. J Wiersma & T. Allrich (University of Minnesota) and ‘Estimating Harvest Loss’ by G. Carlson & D. Clay (South Dakota State University).

Grain harvest losses result from shattering of the standing grain, shattering during windrowing (swathing) or direct combining, picking up the swath with the combine, and threshing, separating and cleaning within the combine. Estimates of acceptable losses for small grains such as wheat, barley and oats are placed at 3% of total yield (total yield equals harvested yield plus harvest losses).

It is usually very difficult to reduce total losses below 1 to 2% so the operator must decide on the value of the crop, the cost of combining and the time available for combining or climate conditions. Some harvest loss is unavoidable in order to get harvesting done in the time available with an end goal of cleaned harvested grain.

Estimating Harvest Losses.  Advancements in engineering have greatly improved harvest operations. Combines have various types of monitoring equipment available, including grain loss monitors, to help alert the operator to any potential problems.  A grain loss monitor is a good guide in selecting travel speed for varying conditions such as size of windrow and moisture conditions. A grain loss monitor must be calibrated to provide an acceptable grain loss reading. If the combine is used on different crops, the monitors are not only useful in limiting maximum speeds and losses, but can be used to properly feed the combine for optimum capacity.

However, a grain loss monitor is not a substitute for careful machine adjustments and good old fashioned monitoring, i.e. getting out of the combine to estimate losses. Or even better, when your local retail agronomist comes out with cold beverages, put him/her to work to estimate harvest losses.

A simple and rough estimate of grain loss requires the use of a one-foot square frame. A rough estimate of how much grain is left behind in a harvested field can be done with a few simple steps:

  1. Pick a typical area of the field after the combine has passed.
  2. Place a 1 ft by 1 ft (inside dimension) box on the ground and count the kernels found within the box. To improve accuracy, three counts (one behind the left side of the header, one behind the centre of the combine, and one behind the right side of the combine) are better.
  3. A one (1) bushel per acre loss equates to 20 wheat kernels/ft2, 14 barley kernels/ft2 and 10 oat kernels/ft2. Keep in mind that this is a ‘fudge factor’ but for the purpose of rough field estimation is an adequate estimate. There are more accurate ways to estimate harvest losses which take into consideration the width of windrower cut and combine cylinder.

If losses are on the high end, some investigation is warranted to try and identify the source of loss.  Is the crop shattering prior to the arrival of the combine (to check for losses that occurred prior to the arrival of the combine, i.e. shattering, use the method above in the unharvested areas of the field)? Are there header losses? Or are the losses due to less than perfect threshing/separation of grain within the combine?  Finding the answer may help to adjust the harvest operation and maximize the amount of grain going into the bin!

Good luck with #Harvest16!

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Manitoba Agriculture website: www.manitoba.ca/agriculture
Manitoba Agriculture on Twitter: @MBGovAg
Manitoba Agriculture on YouTube: www.youtube.com/ManitobaAgriculture
Respond
Have a follow-up question?

When Should I Desiccate My Sunflowers?

The ‘right’ time to desiccate sunflowers is when the back of the head looks banana yellow and the bracts are brown up to and past the shoulders.  This visual combination equates to R9 or typically around 30% seed moisture.  You want to visually check out different parts of your fields, looking at the areas that you know advance faster and the ones that advance the slowest.  Try to aim that the majority of you field is at the R9 stage.

 

IMG_20150901_194531

Reasons to desiccate would be that even though seed moisture is drying down, to properly thresh out the seeds, the head material and stalk material need to be dry as well.  Desiccation speeds up time to harvest meaning seeds are off the field faster, which can mean less losses from head rot damage, stalk breakage and bird feeding.  National Sunflower Association of Canada has just released a bulletin explaining more on timing and products at http://www.canadasunflower.com/

Not so sure on the visual description?  You can hand shell out a couple of heads and test the seed moisture to see if the seed is around 30% moisture or less.  An easy method is the microwave method, which is explained in this paper http://library.ndsu.edu/repository/bitstream/handle/10365/6109/farm_45_02_03.pdf?sequence=1

 

Submitted by: Anastasia Kubinec, MAFRD Oilseed Crop Specialist

Respond
Have a follow-up question?

Don’t Rely Solely on Your Grain Loss Monitor – Estimating Harvest Losses in Cereals

It is harvest time in Manitoba. Since final yields aren’t determined until the crop is in the bin, attention now has to be focused on the harvest operation. Grain loss at harvesting time is a direct loss of income. The more grain saved, the greater the returns. The following information comes from 2 articles: ‘Grain Harvest Losses’ by V. Hofman with edits by Dr. J Wiersma & T. Allrich (University of Minnesota) and ‘Estimating Harvest Loss’ by G. Carlson & D. Clay (South Dakota State University).

Grain harvest losses result from shattering of the standing grain, shattering during windrowing (swathing) or direct combining, picking up the swath with the combine, and threshing, separating and cleaning within the combine. Estimates of acceptable losses for small grains such as wheat, barley and oats are placed at 3% of total yield (total yield equals harvested yield plus harvest losses).

It is usually very difficult to reduce total losses below 1 to 2% so the operator must decide on the value of the crop, the cost of combining and the time available for combining or climate conditions. Some harvest loss is unavoidable in order to get harvesting done in the time available with an end goal of cleaned harvested grain.

Estimating Harvest Losses.  Advancements in engineering have greatly improved harvest operations. Combines have various types of monitoring equipment available, including grain loss monitors, to help alert the operator to any potential problems.  A grain loss monitor is a good guide in selecting travel speed for varying conditions such as size of windrow and moisture conditions. A grain loss monitor must be calibrated to provide an acceptable grain loss reading. If the combine is used on different crops, the monitors are not only useful in limiting maximum speeds and losses, but can be used to properly feed the combine for optimum capacity.

However, a grain loss monitor is not a substitute for careful machine adjustments and good old fashioned monitoring, i.e. getting out of the combine to estimate losses. Or even better, when your local retail agronomist comes out with cold beverages, put him/her to work to estimate harvest losses.

A simple and rough estimate of grain loss requires the use of a one-foot square frame. A rough estimate of how much grain is left behind in a harvested field can be done with a few simple steps:

  1. Pick a typical area of the field after the combine has passed.
  2. Place a 1 ft by 1 ft (inside dimension) box on the ground and count the kernels found within the box. To improve accuracy, three counts (one behind the left side of the header, one behind the centre of the combine, and one behind the right side of the combine) are better.
  3. A one (1) bushel per acre loss equates to 20 wheat kernels/ft2, 14 barley kernels/ft2 and 10 oat kernels/ft2. Keep in mind that this is a ‘fudge factor’ but for the purpose of rough field estimation is an adequate estimate. There are more accurate ways to estimate harvest losses which take into consideration the width of windrower cut and combine cylinder.

If losses are on the high end, some investigation is warranted to try and identify the source of loss.  Is the crop shattering prior to the arrival of the combine (do the above steps before harvest to determine this)? Are there header losses? Or are the losses due to less than perfect threshing/separation of grain within the combine?  Finding the answer may help to adjust the harvest operation and maximize the amount of grain going into the bin!

Good luck with Harvest 2015.

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD

 

Respond
Have a follow-up question?

Harvest Hints for Combining Sunflowers

As the first seeded sunflowers are desiccated and are drying down, here are some helpful hints on combining from the National Sunflower Association of Canada (NSAC). 

Harvest 2014 – Special Bulletin

Sunflowers can be safely combined when the seed moisture is below 18-20%. However, allowing sunflowers to dry-down to a moisture content of 9.5 -12% reduces the need for drying on-farm.  At 12% moisture content, seed can be stored in bins with aeration. Any moisture content over 12% will require drying to avoid spoilage. Oil-type sunflowers can be dried with temperatures of 71º to 104º C (160ºF to 220ºF) but confection-type sunflower seed may scorch or wrinkle with these temperatures. Sunflower seed should be cooled before storage, since even sunflowers at 8.5% moisture can spoil if stored when warm.

For more information on sunflowers:

National Sunflower Association of Canada –  www.canadasunflower.com

MAFRD Sunflower Production and Management – http://www.gov.mb.ca/agriculture/crops/production/sunflowers.html

 

Information Contributed by Anastasia Kubinec, MAFRD Oilseed Crop Specialist

Respond
Have a follow-up question?

Sunflower Staging and Guessing Maturity

SF G&D chart

Prepared by Anastasia Kubinec, MAFRD Oilseed Crop Specialist

Sunflower planting was spread out in 2014, which means flowering and dry-down will be as well. The chart below gives and indication to the amount of time it will take the crop to reach R8 to R9. This is a guide only. Sunflower development and dry down is based on temperature. If August is all above 25C during the day and doesn’t go below 10C at night, the sunflower crop will develop much faster than this!

From August 5th to 31st, regardless of location, there is typically 275-320 Sunflower GDD accumulated in Manitoba. To get from R5.1 to R9 the crop needs 393 GDD.

Sunflower Stage Sunflower GDD (Celcius)
VE 97
V1 117
V12 333
R1 569
R2 647
R3 726
R4 805
R5.1 883
R5.5 962
R6 1040
R7 1119
R8 1197
R9 1276

 

*Sunflower GDD= (Tmax+Tmin)/2 – 6.7C

   Example            = ((25+10)/2)-6.7=10.8

For more information, contact NSAC agronomist at (204)750-2555 or MAFRD Oilseed Crop Specialist at (204) 750-2717

 

References

Standardized Growth Stages described by Schneiter and Miller. 1981. Description of Sunflower Growth Stages. Crop Science 11: 635-638

Graph Developed by MAFRD Crops Knowledge Centre

Respond
Have a follow-up question?