,

Cereal Crops Recovering from Frost Injury

The May 30th frost impacted spring cereal crops across Manitoba. Fortunately, majority of spring wheat, oats and barley were at the tillering stages of development where the growing point is still below ground and therefore protected from the cool air temperatures (the growing point moves above ground at jointing or stem elongation).

However, this doesn’t mean cereal crops escaped without some symptoms of injury.  In MAFRD’s June 3 webinar (available on YouTube at http://youtu.be/UDa3uWMmZzg), I covered some of the basics of frost injury symptoms in cereal crops and what to look for in terms of recovery. (And for those interested in canola and flax, my colleague Anastasia Kubinec of MAFRD covered some excellent material for those crop types in the same webinar).

For cereals, you want to look for new leaf growth (normal green color) from the growing point that should follow within 2 to 3 days after the frost event. It can go upwards of 5 days if growing conditions are cool.  Below is a great photo by Lionel Kaskiw with MAFRD which shows barley impacted by frost recovering.  You’ll also notice the water-soaked appearance of some of the older leaves, a classic symptom of frost injury.

Frost Damaged Barley

Frost-Damaged Barley Recovering; Note New Leaf Growth Emerging from the Growing Point – Photo by Lionel Kaskiw, MAFRD (2015)

Fortunately, the loss of leaf tissue at this early stage should have little impact on yield.  But be cautious when applying herbicides in the coming days.  Generally, you want to wait for at least 48 hours after the frost event, as well as seeing the crop resuming growth.  However, please check with your local chemical representative in terms of when it should be safe to apply herbicides after a frost event as it can be product-specific.

More additional information on frost damage, refer to MAFRD’s Spring Frost Damage Bulletin.

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD

 

Respond
Have a follow-up question?
,

Thinking about Reseeding Cereals? Read this First.

I have been receiving a few calls on producers considering reseeding poor barley stands, or concerned about their cereal crops in general. So I thought I would take this chance to review some key points producers and agronomists should think about if considering reseeding their cereal acres. A lot of the information is derived from a great article by North Dakota State University staff titled “Replanting or Late Planting Crops” (Publication A-934; Revised). I have included some of that information and added Manitoba-specific data and comments.

Why are some cereal fields impacted? Many producers were able to start seeding their cereal crops early in 2015. However, slow and/or uneven emergence was noted in many fields due to cool soil temperatures, dry soil conditions (in some areas of the province) and below normal temperatures following emergence. The slow growth was further complicated by excessive rainfall, wind, snow and frost over May Long weekend, and then another frost event on May 30. Not only do these conditions bring with it concern for erratic crop emergence and poor plant stand establishment, it can also promote a number of seeding diseases and root rots.

The Main Question to Answer. At the end of the day, producers must try and answer the question “Will which result in greater net return – keeping the original stand or replanting to the same/different crop?”.

The final decision should be backed by sound agronomic and economic information as well as taking into consideration AgriInsurance coverage and contracts. Agronomic information to consider should include: level of injury, crop uniformity and overall plant health of the original stand, alternate crop choices if reseeding, and management practices related to crop growth and development for either the original stand or the replanted crop. Producers and their agronomists should accurately assess all these factors in order to make an informed decision. I realize that is a lot of information to gather. Perhaps it is easy to think of it in a few steps.

Step 1: Evaluate original crop stand and yield potential. The best possible evaluation of the surviving stand is needed because the critical yield comparison ultimately will be between the original stand versus the replanted stand with a later than optimum planting date.  Remember, you need to allow time for crop to recover from injury prior to assessing plant stands!

To accurately evaluate the existing stand, stand counts should be taken at random from several areas of the field. For more information read the article “Doing Plant Stand Counts in Your Cereals”: http://cropchatter.com/doing-plant-counts-in-your-cereals/.  Typically for cereals, minimum stand levels that should be considered acceptable before reseeding is done ranges from 8 to 14 plants per square foot (NDSU). During early growth stages, most cereal crops can sustain some stand loss without experiencing significant yield reduction due to increased tillering. Keep in mind barley and oats typically tiller more than spring wheat.

However, the minimum stands stated is assuming plant stands are relatively uniform in distribution; what can complicate this assessment is the damage in fields can be distributed randomly throughout the field.

In addition to the direct effect of stand reduction, indirect effects of crop injury, such as increased weed competition and increased disease potential, should be considered. Damaged crops usually grow slowly until they have recovered, which provides the potential for greater weed competition.

Step 2: Evaluate yield potential & agronomics of replanted crop options. Crops replanted later in the season almost always will yield less than those planted at an optimum time. Figure 1 shows the yield potential of various crop types as seeding moves into June in Manitoba.

Figure 1: Percent Average Yield from 2005-2013 for Manitoba Crops Planted in Week/Month as Reported to MASC

Picture1

Not only yield potential should be considered however. A short growing season increases risk of damage by fall frost affecting both yield and quality of the replanted crop. Increased risk of high daytime temperatures can also affect crop development. For example, there is increased risk of the crop flowering when daytime temperatures are high which can increase probability of floret abortion.

Delayed seeding may also increase potential of yield loss due to disease and insects. MAFRD articles Crop Choices in a Late Planting Scenario and Mitigating Risks Associated with Delayed Seeding will provide additional information to producers.

Step 3: Determine Reseeding Costs. Comparison of the estimated yield of the original stand with expected yield of the replanted crop minus any costs associated with reseeding must be considered.

The decision to reseed ultimately must be made by comparing the economics of the original plant stand with that of a replanted crop. This can be subjective and each case must be considered individually in terms of time of year, alternate crop choices, previous herbicide use, crop economics, AgriInsurance coverage and contracts, and other related factors.  If a producer has AgriInsurance, it is recommended they contact their MASC agent prior to terminating a field and replanting.

Once again, I’d like to acknowledge information from NDSU’s article “Replanting or Late Planting Crops” (Publication A-934; Revised).

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist

Respond
Have a follow-up question?

Historical Seeding in Progress in Manitoba – First Week of May

Producers who participate in AgriInsurance provides seeding date information to Manitoba Agricultural Services Corporation (MASC).  This dataset provides us a historical perspective of when seeding has taken place in the past.  Seeding date data information is broken down into a week:month format, i.e. 1:05 is Week 1 in the 5th Month (May).  So 2:05 is Week 2 in May, and so on.

Each week is then categorized dependent on the day of the week in which the month starts.  So if Week 1 starts on a Sunday, there will be 7 days of seeding captured in Week 1.  However, if Week 1 starts on Friday (like we have in 2015), there are 9 days captured in Week 1.  Confused yet?  Essentially, each year will have a different number of days captured in each weekly timeframe, varying from 5 days up to 12 days.  However, the data still provides good reference points to seeding progress in Manitoba.

In Table 1, cumulative seeding progress to the end of Week 1 in May for six crop types is provided.  The last five year (2009-2013) average cumulative seeding progress is noted, along with what was seeded in the same timeframe in 2014.   Please note that data is for final insured crop in the ground.

Table 1:  Seeding progress (%) in Manitoba by end of Week 1 in May (1:05).

End of Week 1 May Seeding Progress

Based on the May 11th Manitoba Crop Report, overall seeding progress is estimated at 55% complete.  There isn’t a provincial breakdown provided of seeding progress by crop type, but in looking at each region, seeding of spring cereals is ahead of the 5-year average of 2009-2013, and well ahead of 2014!

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD 

Respond
Have a follow-up question?

Yields Respectable in 2014 Despite a Challenging Year

Manitoba Agricultural Services Corporation (MASC) has released an early version of the 2014 yield report with 99.8% of the Harvest Production Reports (HPRs) keyed in.  The table below summarizes the 2014 average yield by crop type based on the harvested acres, as well as comparisons to 2013 and a 5-year average (2009 to 2013).

2014 yields

In February 2015, MASC will release their annual Yield Manitoba publication and update their Manitoba Management Plus Program (MMPP) website (http://www.mmpp.com/mmpp.nsf/mmpp_index.html) where further information on yields and acres by variety will be released.  Additionally, the data will be more complete in February as all HPR’s will be keyed in.

Submitted by:  Pam de Rocquigny, Anastasia Kubinec & Dennis Lange, Crop Specialist with MAFRD

Special Thanks to Doug Wilcox, MASC, for providing the 2014 data!

Respond
Have a follow-up question?

Report available on insured acres of cereal varieties – CGC

WINNIPEG, Oct. 27, 2014 /CNW/ – The “Cereal Varieties – 2014 Insured Commercial Acres” report is now available on the Canadian Grain Commission’s web site. The report covers Manitoba, Saskatchewan, Alberta and British Columbia and shows the number of insured acres of seeded varieties of wheat, durum, barley, oats, rye and triticale. The report shows total acres of each cereal crop by province. Information for wheat is further broken down by class.

The report is based on information from Manitoba Management Plus Program, Saskatchewan Crop Insurance, Alberta Agricultural Financial Services Corp. and BC Crop Insurance.

Quick facts

  • The Canadian Grain Commission’s report is based on acres insured through provincial crop insurance in the western provinces and does not reflect total acres seeded.
  • In the report, cereal varieties are classified based on the Canadian Grain Commission’s lists of designated varieties.

Associated links

Canadian Grain Commission

The Canadian Grain Commission is the federal agency responsible for establishing and maintaining Canada’s grain quality standards. Its programs result in shipments of grain that consistently meet contract specifications for quality, safety and quantity. The Canadian Grain Commission regulates the grain industry to protect producers’ rights and ensure the integrity of grain transactions.

SOURCE Canadian Grain Commission; Government of Canada

Respond
Have a follow-up question?
,

Stem Rust & Crown Rust in Oats

An agronomist contacted me in regards to finding rust in an oat field in Southern Manitoba. I toured out there today to find both stem and crown rust present in the field.  I also toured a MCVET oat trial where I could find stem rust in each of the entries.  I have provided a review below of stem rest and crown rust in oats.

Stem rust
Stem rust is caused by the fungus Puccinia graminis f.sp. avenae.  The disease appears as elongated reddish-brown pustules mainly on stems but also on leaves and heads. The powdery spore masses in the pustules can dislodge readily.

Stem rust causes yield losses through absorbing of nutrients that would otherwise be used for grain development, interferes with plant vascular tissue which can lead to shriveled grain, and it can weaken the stem causing lodging.

Stem Rust

Stem Rust in Oats. Photo by: Pam de Rocquigny, 2014

Crown rust
Crown rust is caused by the fungus Puccinia coronate f.sp avenae. The characteristic symptom is the development of round to oblong, orange to yellow pustules, primarily on leaves but also on stems and heads. The powdery spore masses in the pustules are readily dislodged. The pustule areas turn black with age.

Losses result from damage to leaves (particularly the flag leaf), which leads to reduced photosynthesis and transport of carbohydrates to the developing grain. This causes shriveled grain and reduced grain quality.

Crown Rust

Crown Rust in Oats. Photo by: Pam de Rocquigny, 2014

There isn’t much to be done at this stage of the growing season if rust is found.  However, in future growing seasons control options would include planting resistant varieties, seeding early if possible, and application of fungicides.

Submitted by:  Pam de Rocquigny, MAFRD Cereal Crops Specialist

For additional information, visit MAFRD’s website:

 

 

Respond
Have a follow-up question?
,

What Causes Blast in Oats?

Over the past week, I have seen pictures or samples of oat panicles where there are empty florets on the panicle.  Oat samples displaying the same symptoms have come into Manitoba Agriculture’s Crop Diagnostic Centre.  Mardi Desjardins, formerly of Manitoba Agriculture, provided the following information on Blast in Oats.

oat blast

Blast in Oats. Photo by Manitoba Agriculture (2014)

Blast in oats can be caused by stresses such as unfavorable growing conditions prior to emergence of the panicle, any time from floret initiation to panicle emergence.  It is a little different from heat sterility related to high temperatures at anthesis and “blasted” florets typically appear incompletely developed.

Factors most commonly linked to blast in oats include insufficient light due to cloudy conditions, temperature extremes, moisture stress, or physical damage from hail.  Florets begin forming several weeks prior to emergence of the panicle and if stresses occur during the development, the least developed florets at time of the stress tend to be aborted. The ones most commonly affected are those toward the base of the panicle and on inner branches of the panicle which are the youngest.  Blasted florets can however, potentially occur throughout the panicle or in a different area of the panicle.

The lower part of the panicle location in the picture above and the incompletely developed nature of the florets in the picture are classic for the environmentally caused “blast”.

Submitted by:  Mardi Desjardins, formerly of the Crop Diagnostic Centre & Pam de Rocquigny, Cereal Crops Specialist, Manitoba Agriculture

Respond
Have a follow-up question?

Update to Historical Seeding Progress in Manitoba

Another week has passed and seeding progress was made in some areas of Manitoba, while some producers wait for warmer and drier conditions.  Hopefully many producers are able to make good seeding progress while the sun shines over the next few days.

Last week I provided an update “What is ‘normal’ seeding progress for this time of year?”  http://cropchatter.com/what-is-normal-seeding-progress-for-this-time-of-year/.  That information covered up to end of Week 1 in May.

In Table 2 below, cumulative seeding progress to the end of Week 2 in May for six crop types is provided.  The last five year (2008-2012) average cumulative seeding progress is noted, along with what was seeded in the same timeframe in 2013. (In 2013, Week 2 ended on May 18th).   Please note that data is for final insured crop in the ground.

Table 2:  Historical seeding progress in Manitoba by end of Week 2 in May (2:05).

Crop Cumulative 5 yr Cumulative 2013 (%)
(2008-2012) (%)
Red Spring Wheat 65 54
Barley 58 38
Oats 56 36
Argentine Canola 36 22
Grain Corn 62 79
Soybeans 22 28

Good luck to everyone with their seeding operations and keep safe!

Submitted by:  Pam de Rocquigny, MAFRD Provincial Cereal Crops Specialist

Respond
Have a follow-up question?

What is ‘normal’ seeding progress for this time of year?

Continuing cold temperatures (both air and soil) and wet conditions are impacting seeding operations across Manitoba, and in other parts of Canada and the Northern United States.  So what is ‘normal’ seeding progress for this time of year, early May?”

Producers who participate in AgriInsurance provides seeding date information to Manitoba Agricultural Services Corporation (MASC).  This dataset provides us a historical perspective of when seeding has taken place in the past.  Seeding date data information is broken down into a week:month format, i.e. 1:05 is Week 1 in the 5th Month (May).  So 2:05 is Week 2 in May, and so on.

Each week is then categorized dependent on the day of the week in which the month starts.  So if Week 1 starts on a Sunday, there will be 7 days of seeding captured in Week 1.  However, if Week 1 starts on Thursday (like we have in 2014), there are 10 days captured in Week 1.  Confused yet?  Essentially, each year will have a different number of days captured in each weekly timeframe, varying from 5 days up to 12 days.  However, the data still provides good reference points to seeding progress in Manitoba.

In Table 1, cumulative seeding progress to the end of Week 1 in May for six crop types is provided.  The last five year (2008-2012) average cumulative seeding progress is noted, along with what was seeded in the same timeframe in 2013.   Please note that data is for final insured crop in the ground.

 Table 1:  Seeding progress in Manitoba by end of Week 1 in May (1:05).

Crop Cumulative 5 yr  (2008-2012) (%) Cumulative 2013 (%)
Red Spring Wheat 50.0 7.4
Barley 41.3 6.8
Oats 43.4 5.3
Argentine Canola 16.7 1.9
Grain Corn 44.9 12.2
Soybeans 2.4 0.2

 

So, is it time to worry?  I think many are aware of the ability of producers to seed a large amount of acres in a short time frame, as witnessed in 2013.  All we need is Mother Nature to send warm, dry weather our way!

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist

Respond
Have a follow-up question?

What are minimum germination temperatures?

Soil temperature is a useful gauge for timing when crops are seeded.  Table 1 shows the minimum germination temperatures for various crops.  These values should be regarded as approximate since germination depends on several factors.  If the soil is too cool, germination can be delayed which can result in uneven or inadequate seedling emergence.

How do I measure soil temperature?

Determine how deep you will be seeding. Then place your soil thermometer at that targetted depth. Take two measurements throughout the day: one in the morning (8am) and one in the early evening (8pm) . Average the two readings to determine the average soil temperature.

MAFRD recommends that you take readings for two to three days to establish a multiple day average, and reminds you to measure temperature in a number of locations in the field, to account for field variability.  Still not sure, see soil temperature data for various locations across Manitoba is available from MAFRI’s Ag-Weather Program:  http://tgs.gov.mb.ca/climate/SoilTemp.aspx.  This can be used as a guideline for an area, but in-field measurements are going to tell you what is actually going on in your field!

Table 1: Minimum Germination Temperatures for Various Crops

Crop Temperature (°C)
Wheat 4
Barley 3
Oats 5
Corn 10
Canola 5
Flax 9
Sunflower 6
Edible Beans 10
Peas 4
Soybeans 10

Sources: North Dakota StateUniversity Extension Service, Alberta Agriculture & Rural Development and Canola Council of Canada

Respond
Have a follow-up question?