Historical Seeding Progress in Manitoba by the End of the Second Week of May

Producers who participate in AgriInsurance provides seeding date information to Manitoba Agricultural Services Corporation (MASC).  This dataset provides us a historical perspective of when seeding has taken place in the past.  Seeding date data information is broken down into a week:month format, i.e. 1:05 is Week 1 in the 5th Month (May).  So 2:05 is Week 2 in May, and so on.

In Table 1, cumulative seeding progress to the end of Week 2 in May for six crop types is provided.  The last five year (2010-2014) average cumulative seeding progress is noted, along with what was seeded in the same timeframe in 2015.   Please note that data is for final insured crop in the ground.

Table 1:  Seeding progress (%) in Manitoba by end of Week 2 in May (2:05)

Seeding Progress End of Week 2 May

Based on the May 16th Manitoba Crop Report, overall seeding progress is estimated at 61% complete.  There isn’t a provincial breakdown provided of seeding progress by crop type in 2016. However, looking at the information for the various crop types, we can infer that seeding progress in Manitoba in 2016 is likely still ahead of the five year average for cereal crops and grain corn.

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Follow Manitoba Agriculture on Twitter (@MBGovAg) to receive updates on seeding progress through the weekly Manitoba Crop Report.
The weekly crop report is also available at Manitoba Crop Report.

 

Respond
Have a follow-up question?

Historical Seeding Progress in Manitoba for First Week of May

Producers who participate in AgriInsurance provides seeding date information to Manitoba Agricultural Services Corporation (MASC).  This dataset provides us a historical perspective of when seeding has taken place in the past.  Seeding date data information is broken down into a week:month format, i.e. 1:05 is Week 1 in the 5th Month (May).  So 2:05 is Week 2 in May, and so on.

Each week is then categorized dependent on the day of the week in which the month starts.  So if Week 1 starts on a Sunday, there will be 7 days of seeding captured in Week 1 (which applies to 2016 as May 1st was on a Sunday).  However, if Week 1 starts on Friday (like we had in 2015), there are 9 days captured in Week 1.  Confused yet?  Essentially, each year will have a different number of days captured in each weekly timeframe, varying from 5 days up to 12 days.  However, the data still provides good reference points to seeding progress in Manitoba.

In Table 1, cumulative seeding progress to the end of Week 1 in May for six crop types is provided.  The last five year (2010-2014) average cumulative seeding progress is noted, along with what was seeded in the same timeframe in 2015.   Please note that data is for final insured crop in the ground.

Table 1:  Seeding progress (%) in Manitoba by end of Week 1 in May (1:05)

Seeding Progress First week of May

Based on the May 9th Manitoba Crop Report (Issue #2), overall seeding progress is estimated at 48% complete.  There isn’t a provincial breakdown provided of seeding progress by crop type in 2016. However, looking at the information for the various crop types, we can infer that seeding progress in Manitoba in 2016 is likely ahead of the five year average.

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Follow Manitoba Agriculture on Twitter (@MBGovAg) to receive updates on seeding progress through the weekly Manitoba Crop Report.
The weekly crop report is also available at Manitoba Crop Report.

 

Respond
Have a follow-up question?
,

Historically, what has been seeding progress prior to May 1st?

Some producers have started their 2016 seeding operations, with spring wheat being seeded and from what I’ve heard a few acres of corn as well.  With some seeding done, I’ve been asked the question: “What has been seeding progress prior to May 1st in Manitoba in recent years?”.

Producers who participate in AgriInsurance provides seeding date information to Manitoba Agricultural Services Corporation (MASC).  This dataset provides us a historical perspective of when seeding has taken place in the past.

In Table 1, cumulative seeding progress prior to May 1st for six crop types is provided.  A five year (2010-2014) average cumulative seeding progress is noted, along with what was seeded prior to May 1st in 2015. Please note that data is for final insured crop in the ground.

Table 1:  Seeding progress in Manitoba prior to May 1st.

Historical Planting Progress prior to May 1st

Data Source:  Manitoba Agricultural Services Corporation (MASC)

What the table doesn’t show is the wide range of seeding progress prior to May 1st over the past few years.  If we look at seeding progress for red spring wheat in Manitoba, we’ve seen less than 1% of acres seeded prior to May 1st (2009, 2011, 2013 and 2014) but as many as 65% of acres (2010) planted in April.

Look for future updates to historical seeding progress as we enter May!

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Follow Manitoba Agriculture on Twitter (@MBGovAg) to receive updates on seeding progress through the weekly Manitoba Crop Report.
The weekly crop report is also available at Manitoba Crop Report.

 

Respond
Have a follow-up question?

Have you thought about your seedling mortality?

You’ve chosen the variety or varieties you want to grow in 2016. You’ve decided on your target plant stand. And from your seed test results, you have the percent germination and thousand kernel weight (TKW). But have you given any thought to your seedling mortality?

When calculating the seeding rate needed to achieve your target plant stand, you often hear about TKW and percent germination. But remember when calculating seeding rates, you need to take into account the seedling mortality rate, i.e. what percent of viable seed will germinate but not produce a plant.

Seedling mortality can vary greatly from year to year, and field to field. For cereals, seedling mortality rates can range from 5 to 20%.  Many farmers and agronomists have found a 5 to 10% mortality rate can be assumed. However, farmers may need to make adjustments to their seedling mortality based on factors such as available moisture, soil temperature, residue cover, seed quality, amount of seed-placed fertilizer, seeding depth, seeding date, and disease and insect pressure.

One additional factor you maybe should consider is the impact of seeding rate itself on seedling mortality or stand loss. Grant Mehring from North Dakota State University shared some recent work at the 2015 Manitoba Agronomists Conference looking at optimum seeding rates for hard red spring wheat. Across 23 environments from 2013 to 2015, his research showed increased stand loss as seeding rate increased (from a percent stand loss of 3% at the lowest seeding rate up to 21% at the highest seeding rate). His research suggests using a seedling mortality of 10 to 20%, even under good seed bed conditions.

Determining seedling mortality is not easy. Since mortality depends on the combination of conditions and management practices of individual farms, producers should keep records of emergence (and thus mortality) in their fields each year. The data collected will help in the future when calculating seeding rates.

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, Manitoba Agriculture

Follow Manitoba Agriculture on:
Twitter: @MBGovAg
YouTube: www.youtube.com/ManitobaAgriculture

 

Respond
Have a follow-up question?

Update to Historical Seeding Progress – Week 3 in May

Another week has passed and despite May Long Weekend’s rain and snow, seeding has resumed in many areas of Manitoba.  Once again, hopefully many producers are able to make good seeding progress while the sun shines over the next few days!

In Table 1 below, cumulative seeding progress to the end of Week 3 in May for six crop types is provided.  The last five year (2009-2013) average seeding progress is noted, along with what was seeded in the same timeframe in 2014. (In 2014, Week 3 ended on May 24th).   Please note that data is for final insured crop in the ground.

Table 1:  Historical seeding progress in Manitoba by end of Week 3 in May (3:05).

seeding progress end of third week of May

To keep up to date on seeding progress in Manitoba, follow MAFRD on Twitter [email protected] to get the Manitoba Crop Report, as well as other seasonal reports.

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD

Respond
Have a follow-up question?

Historical Seeding in Progress in Manitoba – First Week of May

Producers who participate in AgriInsurance provides seeding date information to Manitoba Agricultural Services Corporation (MASC).  This dataset provides us a historical perspective of when seeding has taken place in the past.  Seeding date data information is broken down into a week:month format, i.e. 1:05 is Week 1 in the 5th Month (May).  So 2:05 is Week 2 in May, and so on.

Each week is then categorized dependent on the day of the week in which the month starts.  So if Week 1 starts on a Sunday, there will be 7 days of seeding captured in Week 1.  However, if Week 1 starts on Friday (like we have in 2015), there are 9 days captured in Week 1.  Confused yet?  Essentially, each year will have a different number of days captured in each weekly timeframe, varying from 5 days up to 12 days.  However, the data still provides good reference points to seeding progress in Manitoba.

In Table 1, cumulative seeding progress to the end of Week 1 in May for six crop types is provided.  The last five year (2009-2013) average cumulative seeding progress is noted, along with what was seeded in the same timeframe in 2014.   Please note that data is for final insured crop in the ground.

Table 1:  Seeding progress (%) in Manitoba by end of Week 1 in May (1:05).

End of Week 1 May Seeding Progress

Based on the May 11th Manitoba Crop Report, overall seeding progress is estimated at 55% complete.  There isn’t a provincial breakdown provided of seeding progress by crop type, but in looking at each region, seeding of spring cereals is ahead of the 5-year average of 2009-2013, and well ahead of 2014!

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD 

Respond
Have a follow-up question?

Confused about Fluency? Read on…

Submitted by Jeanette Gaulthier, MAFRD Pesticide Use Specialist and Holly Derksen, MAFRD Field Crop Pathologist

The PMRA requires the use of Fluency Agent as the seed flow lubricant when planting corn or soybean treated with a neonicotinoid insecticide (a list of products is included in the link below). Fluency Agent produces 65 percent less dust than talc or graphite and may significantly reduce the risk of neonicotinoid exposure to bees and other pollinators.

This requirement only applies to treated corn and soybean seeded using vacuum planters. Although not required, Fluency Agent can be used in all types of planters.

As with anything new, producers using Fluency Agent for the first may have a bit of a learning curve before things run smoothly. Nathan Klassen, Seed Growth Specialist, with Bayer CropScience offers these tips to avoid hiccups:

  1. Give it a mix. Add Fluency Agent to the seed tote or planter box and give it a quick stir with a stick or gloved hand – 30 seconds is more than enough. A thorough mix before the first run of the year with your planter helps lubricate the equipment; a quick mix when refilling the planter during your subsequent fills ensures the product is mixed within the seeds.

 

  1. When it comes to Fluency Agent, less is more.   A 1/8 cup treats 1x 50 lb bag of seed or a 400 gram container treats 1 seed tote (50 bags). Don’t over apply the product; there is no advantage to adding extra to your seeds before going into the planter.

Fluency Agent is available from your corn and soybean seed dealers as well as select equipment dealerships.

Use of Fluency Agent is just one way to reduce the risk of neonicotinoid exposure to bees. Visit the Manitoba Corn Growers Association website for a full list of Best Management Practices: http://manitobacorn.ca/public-policy/

 

Pest Management Regulatory Agency Requirement when using Treated Corn/Soybean Seed: www.hc-sc.gc.ca/cps-spc/alt_formats/pdf/pubs/pest/_fact-fiche/pollinator-protection-pollinisateurs/treated_seed-2014-semences_traitees-eng.pdf

Respond
Have a follow-up question?

Uniform Emergence in Corn Critical to Yield

Ensuring corn emerges uniformly is the first step in maximizing yield potential.

Why Corn Emerges Unevenly.  The most common reason for uneven corn emergence is soil moisture. Soil moisture in the seed zone can differ because of variations in soil type, topography, and uneven distribution of moist and dry soils due to secondary tillage. Cloddy seedbeds caused by working the ground too wet can result in poor contact between seed and soil, allowing some seeds to germinate while others are too dry.

Another factor affecting corn emergence is soil temperature. Seed depth soil temperatures can vary if crop residues aren’t evenly distributed, if seed depths vary, and if soil within fields vary in type and topography. Corn may also emerge non-uniformly because of variable soil crusting, herbicide injury or because of insects or diseases.

Impact on Grain Yields. Competition from larger, early-emerging plants will decrease the yield of smaller, later-emerging plants. Research out of the University of Illinois examined the effect of non-uniform emergence on grain yield. Plots were hand planted and consisted of uniformly planted plots on three separate dates, and various combinations with certain parts of the plot seeded at a later date to simulate delayed emergence.

When looking at within row emergence patterns, a definite yield decrease was seen when plants emerged later than their neighbor (see Table 1).

Table 1: The effect of planting date and uniformity of emergence within row of corn yield.

Picture1

(Average of 7 locations in Illinois and Wisconsin from 1986-1987).  Source: Nafziger, Carter and Graham, Crop Science 31: 811-815 (1991).

The treatment 3E:1M consisted of one plant in every four being planted 10 days later. The result is a decrease in yield of 12 bu/acre (176 bu/ac) compared to the plots where all plants emerged uniformly on the early planting date (188 bu/ac). This yield loss was similar if the entire stand was delayed 10 days. Similar results are seen when emergence (planting) was delayed by 3 weeks, where a decrease in yield of 20 bu/ac was seen compared to the plots where all the plants emerged uniformly on the early planting date.

What to Look at Before & After Planting. Careful planter preparation and pre-planting management are crucial factors affecting uniformity of emergence. On the planter, factors to check include:

  • opening discs are aligned
  • ensure planter is level
  • properly adjust seed firming wheels
  • proper seed depth placement.

Pre-planting management factors to check include:

  • residue – is it bunched?
  • ensure field is not too rough

During planting, also ensure speed is suitable for the field conditions. If field conditions are poor and planting is done at a higher speed, the planter bounce can causing seed depth misplacement. So if one seed out of four is placed out of moisture and it doesn’t rain for a week, a yield decrease may result.

After the crop is up and growing, examine to see if the corn plants are all at the same leaf stage. If there are plants that are one to two leaves behind their neighbors, it could indicate problems with emergence. Nothing can be done for this growing season but knowing what caused it can help with future corn seeding operations.

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD

Respond
Have a follow-up question?

Planting Corn Into Cooler Soils

Optimum corn seed germination occurs when soil temperatures reach 10°C. Cooler temperatures alone are not likely to impose a stress on the seedling, but can delay its emergence. Wet conditions added to cold temperatures following planting will favor development and activity of some soil pathogens that can produce disease stress in the young seedling.

When facing cool planting conditions, other components of successful corn production become more important, such as seedbed condition and planting operations (including planting depth). It is important to keep in mind that rushing the planting operation and planting under less than ideal conditions just to get the crop in can cause problems that can reduce corn yield potential.

Seed Bed Preparation.  When preparing the seedbed, producers should try to perform tillage operations only when necessary and under the proper soil conditions. If facing drier than normal soil conditions, try to reduce secondary tillage passes. If secondary tillage operations are needed, perform only when necessary to prepare an adequate seedbed.

Planting Depth.  Under most conditions, a planting depth of 1.5 to 2 inches is recommended. When soil temperatures are lower and when soil moisture levels are adequate, producers may want to target planting depths around 1.5 inches. However, it is recommended not to plant less than 1.5 inches deep as some seed may end up much shallower due to variation in the seedbed and/or normal variation in planting depth that occurs. These shallower plantings can result in poor nodal root development that leads to ‘rootless’ and ‘floppy’ corn problems, as well as uneven emergence or reduced stands.

When soil moisture is on the drier side, it is not a good idea to plant deeper to chase that soil moisture. Normally good contact between the seed and soil is needed for the seed to take up enough water to allow it to swell and germinate (corn must absorb 30% of its weight in water to germinate). However, planting deeper than 2 inches, especially when soils are cold (i.e., early season, cool season, no-till, etc.), can significantly delay emergence and impact stand establishment.

Final Thoughts. In Manitoba, getting the seed into the ground as early as possible is critical to maximize yield, obtain high quality and low percent kernel moisture at harvest (which will decrease drying costs), and to ensure the crop is mature before fall frosts.

Hybrids and seed treatments available in today’s corn production systems offer some protection from seeding into cooler soils. If planting under less than ideal conditions, adjust the planting operation accordingly. Remember – the planting operation and therefore the number of emerged plants will ultimately set maximum yield potential.

Submitted by: Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD

Respond
Have a follow-up question?

Did my early seeded wheat survive this latest cold snap?

Submitted by:  Pam de Rocquigny, Provincial Cereal Crops Specialist, MAFRD

In my position, I talk with with numerous agronomists (both public & private) regarding cereal crop production.  Often issues facing Manitoba producers are issues facing producers to the east, west and south of us.

One such instance is Jochum Wiersma, who is the Cereal Specialist with the University of Minnesota, recently wrote an article on what the latest cold snap may have had on the earlier planted cereal crops in his area.  However, the information is truly applicable to conditions facing some acres here in Manitoba. Below is the article, along with the link to his blog post.

Did my earliest seeded wheat, barley, and oats survive this latest cold snap?

by Jochum Wiersma

The latest cold snap may have you wonder whether the earlier planted wheat and barley have a snowball’s chance in hell to produce a healthy seedling and stand?  Wheat, barley and oats do not germinate until the soil temperatures reach 40 F (4.4C).  The germination process starts with the uptake of water, breaking the dormancy and starting the development of the sprout.  Once the dormancy is broken the energy stored in the seed is used for the growth and development as well as respiration (basically maintenance).  If the temperatures are low or even freezing the growth and development of young seedling slows down or even stops.  However, respiration continues albeit at a lower rate and continues to deplete the energy stored in the seed.  This will eventually decrease the vigor of the seed and may prevent the sprouted seed to produce a healthy seedling.

With the freezing temperatures the first concerns is whether this can kill the sprouted seed.  Reports from the literature indicate that sprouted wheat and young seedling will likely survive temperatures in the low twenties (20F = -6.7C).  A quick first check of the color of radicle (first root) and coleoptile (first leaf) is the first step: a white and firm radicle and coleoptile will indicate that the sprout is not damaged by frost after the seed has been allowed to thaw out. A second test to determine viability of seed is to dig up seed and bring it home, place it between moist paper towels, and keep it at room temperature.  If the seed is viable the sprouts should start to grow within 24 hours.

Minnesota Crop News: http://blog-crop-news.extension.umn.edu/

Respond
Have a follow-up question?